论文标题
扩展公用事业在任意集上的功能
Extending Utility Functions on Arbitrary Sets
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We consider the problem of extending a function $f^{}_P$ defined on a subset $P$ of an arbitrary set $X$ to $X$ strictly monotonically with respect to a preorder $\succcurlyeq$ defined on $X$, without imposing continuity constraints. We show that whenever $\succcurlyeq$ has a utility representation, $f^{}_P$ is extendable if and only if it is gap-safe increasing. A class of extensions involving an arbitrary utility representation of $\succcurlyeq$ is proposed and investigated. Connections to related topological results are discussed. The condition of extendability and the form of the extension are simplified when $P$ is a Pareto set.