论文标题
用于解决时间空间分数扩散问题的双快速算法使用光谱分数拉普拉斯
Double fast algorithm for solving time-space fractional diffusion problems with spectral fractional Laplacian
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper presents an efficient and concise double fast algorithm to solve high dimensional time-space fractional diffusion problems with spectral fractional Laplacian. We first establish semi-discrete scheme of time-space fractional diffusion equation, which uses linear finite element or fourth-order compact difference method combining with matrix transfer technique to approximate spectral fractional Laplacian. Then we introduce a fast time-stepping L1 scheme for time discretization. The proposed scheme can exactly evaluate fractional power of matrix and perform matrix-vector multiplication at per time level by using discrete sine transform, which doesn't need to resort to any iteration method and can significantly reduce computation cost and memory requirement. Further, we address stability and convergence analyses of full discrete scheme based on fast time-stepping L1 scheme on graded time mesh. Our analysis shows that the choice of graded mesh factor $ω=(2-α)/α$ shall give an optimal temporal convergence $\mathcal{O}(N^{-(2-α)})$ with $N$ denoting the number of time mesh. Finally, ample numerical examples are delivered to illustrate our theoretical analysis and the efficiency of the suggested scheme.