论文标题
与frobenius二面体的自动形态群体相提并论
Lie algebras with Frobenius dihedral groups of automorphisms
论文作者
论文摘要
假设一个谎言代数$ l $承认有限的frobenius自动形态$ fh $,带有环状内核$ f $并补充订单2的$ h $,因此,$ f $的固定点subalgebra是微不足道的,而定点的固定点subergebra为$ h $是Metabelian。然后,$ l $的派生长度由常数界。
Suppose that a Lie algebra $L$ admits a finite Frobenius group of automorphisms $FH$ with cyclic kernel $F$ and complement $H$ of order 2, such that the fixed-point subalgebra of $F$ is trivial and the fixed-point subalgebra of $H$ is metabelian. Then the derived length of $L$ is bounded by a constant.