论文标题

Graphlearner:图形节点聚类,具有完全可学习的增强

GraphLearner: Graph Node Clustering with Fully Learnable Augmentation

论文作者

Yang, Xihong, Min, Erxue, Liang, Ke, Liu, Yue, Wang, Siwei, Zhou, Sihang, Wu, Huijun, Liu, Xinwang, Zhu, En

论文摘要

对比深图聚类(CDGC)利用对比度学习的力量将节点分组为不同的簇。对比样品的质量对于实现更好的性能至关重要,使增强技术成为该过程的关键因素。但是,现有方法中的增强样品总是由人类的经验和下游任务集群的不可知论者预定,从而导致人力资源成本较高和绩效差。为了克服这些局限性,我们提出了一个图形节点聚类,并以完全可学习的增强为Graphlearner。它介绍了可学习的增强器,以生成CDGC的高质量和特定任务的增强样品。 Graphlearner合并了两个专门设计用于捕获属性和结构信息的可学习的增强器。此外,我们介绍了两个改进矩阵,包括高信心伪标签矩阵和跨视图样品相似性矩阵,以增强学习亲和力矩阵的可靠性。在培训过程中,我们注意到培训可学习的增强器和对比度学习网络的独特优化目标。换句话说,我们都应该保证嵌入的一致性以及增强样品的多样性。为了应对这一挑战,我们在方法中提出了一种对抗性学习机制。此外,我们利用两阶段的训练策略来完善高信任矩阵。六个基准数据集的广泛实验结果验证了Graphlearner的有效性。Graphlearner的代码和附录可在https://github.com/xihongyang1999/graphlearner上获得。

Contrastive deep graph clustering (CDGC) leverages the power of contrastive learning to group nodes into different clusters. The quality of contrastive samples is crucial for achieving better performance, making augmentation techniques a key factor in the process. However, the augmentation samples in existing methods are always predefined by human experiences, and agnostic from the downstream task clustering, thus leading to high human resource costs and poor performance. To overcome these limitations, we propose a Graph Node Clustering with Fully Learnable Augmentation, termed GraphLearner. It introduces learnable augmentors to generate high-quality and task-specific augmented samples for CDGC. GraphLearner incorporates two learnable augmentors specifically designed for capturing attribute and structural information. Moreover, we introduce two refinement matrices, including the high-confidence pseudo-label matrix and the cross-view sample similarity matrix, to enhance the reliability of the learned affinity matrix. During the training procedure, we notice the distinct optimization goals for training learnable augmentors and contrastive learning networks. In other words, we should both guarantee the consistency of the embeddings as well as the diversity of the augmented samples. To address this challenge, we propose an adversarial learning mechanism within our method. Besides, we leverage a two-stage training strategy to refine the high-confidence matrices. Extensive experimental results on six benchmark datasets validate the effectiveness of GraphLearner.The code and appendix of GraphLearner are available at https://github.com/xihongyang1999/GraphLearner on Github.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源