论文标题

钡星作为AGB星星II中S过程中核合成的示踪剂。在169星上使用机器学习技术

Barium stars as tracers of s-process nucleosynthesis in AGB stars II. Using machine learning techniques on 169 stars

论文作者

Hartogh, J. W. den, López, A. Yagüe, Cseh, B., Pignatari, M., Világos, B., Roriz, M. P., Pereira, C. B., Drake, N. A., Junqueira, S., Lugaro, M.

论文摘要

我们旨在使用机器学习技术和AGB最终表面丰度,以果味和莫纳什恒星模型预测,分析169钡(BA)恒星的丰度模式。我们开发了使用BA恒星的丰度模式作为输入的机器学习算法,以使用Stellar模型预测对其伴随恒星的初始质量和金属性进行分类。我们使用两种算法:第一个利用神经网络以识别模式,第二个是最近的邻居算法,该算法的重点是查找AGB模型,该模型可以预测最接近观察到的BA星值的最终表面丰度。在第二个算法中,我们包括误差线和观察不确定性,以找​​到最佳拟合模型。分类过程基于FE,RB,SR,ZR,RU,ND,CE,SM和EU的丰度。我们通过系统地从AGB模型丰度分布中删除S过程元素,并确定去除对分类最大的积极影响的元素,从而选择了这些元素。我们排除了NB,Y,MO和LA。我们的最终分类结合了两种算法的输出,以识别每个BA星星伴侣的初始质量和金属性范围。借助我们的分析工具,我们确定了恒星样品中169个BA恒星中166个的主要特性。基于AGB最终丰度的两个恒星集的分类显示出相似的分布,平均初始质量为M = 2.23 msun和2.34 MSUN和平均[Fe/H] = -0.21和-0.11。我们调查了为什么去除NB,Y,MO和LA可以改善我们的分类,并确定了43颗恒星,其排除效果最大。我们表明,与样品中的其他BA恒星相比,这些元素的这些元素具有统计学上的显着差异。我们讨论了这些丰度模式上这些差异的可能原因。

We aim to analyse the abundance pattern of 169 Barium (Ba) stars, using machine learning techniques and the AGB final surface abundances predicted by Fruity and Monash stellar models. We developed machine learning algorithms that use the abundance pattern of Ba stars as input to classify the initial mass and metallicity of its companion star using stellar model predictions. We use two algorithms: the first exploits neural networks to recognise patterns and the second is a nearest-neighbour algorithm, which focuses on finding the AGB model that predicts final surface abundances closest to the observed Ba star values. In the second algorithm we include the error bars and observational uncertainties to find the best fit model. The classification process is based on the abundances of Fe, Rb, Sr, Zr, Ru, Nd, Ce, Sm, and Eu. We selected these elements by systematically removing s-process elements from our AGB model abundance distributions, and identifying those whose removal has the biggest positive effect on the classification. We excluded Nb, Y, Mo, and La. Our final classification combines the output of both algorithms to identify for each Ba star companion an initial mass and metallicity range. With our analysis tools we identify the main properties for 166 of the 169 Ba stars in the stellar sample. The classifications based on both stellar sets of AGB final abundances show similar distributions, with an average initial mass of M = 2.23 MSun and 2.34 MSun and an average [Fe/H] = -0.21 and -0.11, respectively. We investigated why the removal of Nb, Y, Mo, and La improves our classification and identified 43 stars for which the exclusion had the biggest effect. We show that these stars have statistically significant different abundances for these elements compared to the other Ba stars in our sample. We discuss the possible reasons for these differences in the abundance patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源