论文标题
在强迫性MHD湍流中,能量转移和三阶法
Energy transfer and third-order law in forced anisotropic MHD turbulence with hyperviscosity
论文作者
论文摘要
Kolmogorov-Yaglom(三阶)定律将能量转移速率与三阶结构函数的磁磁动力学(MHD)湍流之间的惯性范围联系起来。各向异性是太阳风中的典型特性,在很大程度上挑战了三阶定律的适用性。为了阐明在各向异性存在下的能量传输过程,本研究在强迫MHD湍流上进行了直接数值模拟(DNSS),并在外部磁场的各种强度($ b_0 $)($ b_0 $)的情况下进行正常和高粘度进行,并计算出三阶结构的三种形式的三阶结构,无论有或不带平均azimuthal或Polar Angles angles angles $ b_0 $ b_0 $ b_0 $ b_0 $ b_0 $ b_0 $ b_0 $ b_0 $ b_0。相应地,系统地研究了三种形式的估计能量传输率,并使用各种$ b_0 $进行了研究。结果表明,估计的纵向转移率的峰值在较大的尺度上发生在较大的范围内,其最大最大转移从$ b_0 $方向上移动,以较大的$ b_0 $。与正常粘性病例相比,高粘性病例可以使惯性范围从耗散范围更好地分离,从而促进了惯性范围特性的分析和能量级联速率的估计。在文献中提出的球形表面上的方向平均三阶结构功能可以准确预测能量传递速率和惯性范围,即使在非常高的$ b_0 $下也可以预测能量传递速率。在统计数据有限的情况下,三阶结构函数的计算表明,对方位角平均的依赖性高于时间,尤其是在高$ B_0 $的情况下。这些发现提供了对各向异性效应对能量转移率估计的见解。
The Kolmogorov-Yaglom (third-order) law, links energy transfer rates in the inertial range of magneto-hydrodynamic (MHD) turbulence with third-order structure functions. Anisotropy, a typical property in the solar wind, largely challenges the applicability of the third-order law with isotropic assumption. To shed light on the energy transfer process in the presence of anisotropy, the present study conducted direct numerical simulations (DNSs) on forced MHD turbulence with normal and hyper-viscosity under various strengths of the external magnetic field ($B_0$), and calculated three forms of third-order structure function with or without averaging azimuthal or polar angles to $B_0$ direction. Correspondingly, three forms of estimated energy transfer rates were studied systematically with various $B_0$. The result shows that the peak of the estimated longitudinal transfer rate occurs at larger scales as closer to the $B_0$ direction, and its maximum shifts away from the $B_0$ direction at larger $B_0$. Compared with normal viscous cases, hyper-viscous cases can attain better separation of the inertial range from the dissipation range, thus facilitating the analyses of the inertial range properties and the estimation of the energy cascade rates. The direction-averaged third-order structure function over a spherical surface proposed in literature predicts the energy transfer rates and inertial range accurately, even at very high $B_0$. With limited statistics, the calculation of the third-order structure function shows a stronger dependence on averaging of azimuthal angles than the time, especially at high $B_0$ cases. These findings provide insights into the anisotropic effect on the estimation of energy transfer rates.