论文标题

部分可观测时空混沌系统的无模型预测

Multifold 1-perfect codes

论文作者

Krotov, Denis S.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A multifold $1$-perfect code ($1$-perfect code for list decoding) in any graph is a set $C$ of vertices such that every vertex of the graph is at distance not more than $1$ from exactly $μ$ elements of $C$. In $q$-ary Hamming graphs, where $q$ is a prime power, we characterize all parameters of multifold $1$-perfect codes and all parameters of additive multifold $1$-perfect codes. In particular, we show that additive multifold $1$-perfect codes are related to special multiset generalizations of spreads, multispreads, and that multispreads of parameters corresponding to multifold $1$-perfect codes always exist. Keywords: perfect codes, multifold packing, multiple covering, list-decoding codes, additive codes, spreads, multispreads, completely regular codes, intriguing sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源