论文标题
部分可观测时空混沌系统的无模型预测
Node-oriented Spectral Filtering for Graph Neural Networks
论文作者
论文摘要
图形神经网络(GNN)在同粒细胞数据上显示出了出色的性能,同时由于GNN固有的低通滤波特性,在处理非全都图形数据时的令人印象深刻。通常,由于现实世界图通常是各种子图模式的复杂混合物,因此从全局角度来学习图形上的通用光谱过滤器,因为在大多数当前作品中,在适应局部模式的变化方面仍然存在很大的困难。根据对局部模式的理论分析,我们重新考虑现有的光谱滤波方法,并提出针对图形神经网络(即NFGNN)的淋巴结频谱滤波。通过为每个节点估算面向节点的光谱滤波器,NFGNN具有通过广义翻译的运算符的精确局部节点定位的能力,从而自适应地区分了局部同质模式的变化。同时,重新参数化的利用带来了全球一致性与局部敏感性之间的良好权衡,以学习以节点为导向的光谱过滤器。此外,我们理论上分析了NFGNN的定位属性,表明自适应滤波后的信号仍位于相应的节点周围。广泛的实验结果表明,提出的NFGNN实现了更有利的性能。
Graph neural networks (GNNs) have shown remarkable performance on homophilic graph data while being far less impressive when handling non-homophilic graph data due to the inherent low-pass filtering property of GNNs. In general, since real-world graphs are often complex mixtures of diverse subgraph patterns, learning a universal spectral filter on the graph from the global perspective as in most current works may still suffer from great difficulty in adapting to the variation of local patterns. On the basis of the theoretical analysis of local patterns, we rethink the existing spectral filtering methods and propose the node-oriented spectral filtering for graph neural network (namely NFGNN). By estimating the node-oriented spectral filter for each node, NFGNN is provided with the capability of precise local node positioning via the generalized translated operator, thus discriminating the variations of local homophily patterns adaptively. Meanwhile, the utilization of re-parameterization brings a good trade-off between global consistency and local sensibility for learning the node-oriented spectral filters. Furthermore, we theoretically analyze the localization property of NFGNN, demonstrating that the signal after adaptive filtering is still positioned around the corresponding node. Extensive experimental results demonstrate that the proposed NFGNN achieves more favorable performance.