论文标题

充满信心:保形规范性监控业务流程

Intervening With Confidence: Conformal Prescriptive Monitoring of Business Processes

论文作者

Shoush, Mahmoud, Dumas, Marlon

论文摘要

规定过程监视方法旨在通过在运行时选择性触发干预措施(例如,向客户提供折扣)来提高过程的性能,以增加所需病例结果的可能性(例如,客户进行购买)。规范过程监视方法的骨干是一种干预策略,它决定了哪些情况以及何时应执行干预措施。该领域的现有方法依靠预测模型来定义干预政策;具体而言,他们考虑了当负面结果的估计概率超过阈值时触发干预措施的政策。但是,预测模型计算出的概率可能会带有高度的不确定性(置信度低),从而导致不必要的干预措施,从而浪费了努力。当可用于执行干预措施的资源受到限制时,这种浪费尤其有问题。为了解决这一缺点,本文提出了一种使用所谓的保形预测,即具有信心保证的预测,以扩展现有的规定过程监控方法。使用真实公共数据集的经验评估表明,在有限的资源下,共形预测增强了规定过程监视方法的净增益。

Prescriptive process monitoring methods seek to improve the performance of a process by selectively triggering interventions at runtime (e.g., offering a discount to a customer) to increase the probability of a desired case outcome (e.g., a customer making a purchase). The backbone of a prescriptive process monitoring method is an intervention policy, which determines for which cases and when an intervention should be executed. Existing methods in this field rely on predictive models to define intervention policies; specifically, they consider policies that trigger an intervention when the estimated probability of a negative outcome exceeds a threshold. However, the probabilities computed by a predictive model may come with a high level of uncertainty (low confidence), leading to unnecessary interventions and, thus, wasted effort. This waste is particularly problematic when the resources available to execute interventions are limited. To tackle this shortcoming, this paper proposes an approach to extend existing prescriptive process monitoring methods with so-called conformal predictions, i.e., predictions with confidence guarantees. An empirical evaluation using real-life public datasets shows that conformal predictions enhance the net gain of prescriptive process monitoring methods under limited resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源