论文标题

线性三角形覆盖3圈的学位和代码阈值

The degree and codegree threshold for linear triangle covering in 3-graphs

论文作者

Tang, Yuxuan, Ma, Yue, Hou, Xinmin

论文摘要

鉴于两个$ k $ - 均匀的超图$ f $和$ g $,我们说$ g $具有$ f $ - 覆盖,如果$ g $中的每个顶点都包含在$ f $的副本中。对于$ 1 \ le i \ le k-1 $,让$ c_i(n,f)$成为最小整数,这样每$ n $ n $ vertex $ k $ k $ -sioncraph $ g $ a $δ_i(g)> c_i(g)> c_i(n,f)$都有$ f $ - 覆盖$。 Falgas-Ravry和Zhao [用于覆盖3均匀超图的Codegree阈值,Siam J. J. Invete Math。,2016]的覆盖问题已系统地研究了。去年,Falgas-Ravry,Markström和Zhao [三角形的三角形和四面体覆盖物,3颗粒,组合,概率和计算,2021年]渐近确定的$ C_1(N,F)$ C_1(N,F)$是$ F $是全身的Triangle时。在此注释中,我们给出$ C_2(n,f)$的确切值,并非渐近地确定$ c_1(n,f)$当$ f $是线性三角形$ C_6^3 $,其中$ C_6^3 $是带有3-均匀的超透明的vertex set $ \ \ { $ \ {V_1V_2V_3,V_3V_4V_5,V_5V_6V_1 \} $。

Given two $k$-uniform hypergraphs $F$ and $G$, we say that $G$ has an $F$-covering if every vertex in $G$ is contained in a copy of $F$. For $1\le i \le k-1$, let $c_i(n,F)$ be the least integer such that every $n$-vertex $k$-uniform hypergraph $G$ with $δ_i(G)> c_i(n,F)$ has an $F$-covering. The covering problem has been systematically studied by Falgas-Ravry and Zhao [Codegree thresholds for covering 3-uniform hypergraphs, SIAM J. Discrete Math., 2016]. Last year, Falgas-Ravry, Markström, and Zhao [Triangle-degrees in graphs and tetrahedron coverings in 3-graphs, Combinatorics, Probability and Computing, 2021] asymptotically determined $c_1(n, F)$ when $F$ is the generalized triangle. In this note, we give the exact value of $c_2(n, F)$ and asymptotically determine $c_1(n, F)$ when $F$ is the linear triangle $C_6^3$, where $C_6^3$ is the 3-uniform hypergraph with vertex set $\{v_1,v_2,v_3,v_4,v_5,v_6\}$ and edge set $\{v_1v_2v_3,v_3v_4v_5,v_5v_6v_1\}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源