论文标题

Boij-Söderberg猜想的差分模块

Boij-Söderberg Conjectures for Differential Modules

论文作者

Banks, Maya

论文摘要

Boij-Söderberg理论给出了属于多项式环上属于有限长度模块的Betti表的组合描述$ s = k [x_1,\ ldots,x_n] $。我们认为,可以为分级差异$ s $模块的类似数值不变性提供类似的组合描述,这些数字不变性是链复合物的天然概括。我们证明了几个结果可以提供支持该猜想的证据,包括在$ \ Mathbb {p}^{n-1} $上的分级差异$ s $模型和相干滑轮之间的分类配对,以及在$ s = k [t] $的情况下证明了猜想的证明。

Boij-Söderberg theory gives a combinatorial description of the set of Betti tables belonging to finite length modules over the polynomial ring $S = k[x_1, \ldots, x_n]$. We posit that a similar combinatorial description can be given for analogous numerical invariants of graded differential $S$-modules, which are natural generalizations of chain complexes. We prove several results that lend evidence in support of this conjecture, including a categorical pairing between the derived categories of graded differential $S$-modules and coherent sheaves on $\mathbb{P}^{n-1}$ and a proof of the conjecture in the case where $S = k[t]$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源