论文标题
阿贝里安组合量规对称性
Abelian combinatorial gauge symmetry
论文作者
论文摘要
组合量规对称性是一个原理,它使我们能够用两个键并区分特性构造晶格规定理论:a)仅需要一种和两体相互作用; b)对称性是精确的,而不是在有效或扰动的极限下出现的。基态显示了一系列参数的拓扑顺序。本文是对任何有限的阿贝尔集团的构建的概括。除了一般的数学结构外,我们还提出了超导电线阵列中的物理实现,该实现为用静态的汉密尔顿人提供了实现晶格规定理论的途径。
Combinatorial gauge symmetry is a principle that allows us to construct lattice gauge theories with two key and distinguishing properties: a) only one- and two-body interactions are needed; and b) the symmetry is exact rather than emergent in an effective or perturbative limit. The ground state exhibits topological order for a range of parameters. This paper is a generalization of the construction to any finite Abelian group. In addition to the general mathematical construction, we present a physical implementation in superconducting wire arrays, which offers a route to the experimental realization of lattice gauge theories with static Hamiltonians.