论文标题
空间深度卷积U-NET,用于通过分布式声感应进行流量分析
Spatial Deep Deconvolution U-Net for Traffic Analyses with Distributed Acoustic Sensing
论文作者
论文摘要
将城市范围的光纤电缆转换为大规模应变感应阵列的分布式声传感(DAS),通过提供细分,可扩展和低维护的监测解决方案来彻底改变城市交通监测的可能性。但是,DAS的现实应用受到了诸如噪音污染和紧密行驶汽车干扰等挑战的阻碍。作为回应,我们引入了一种自我监督的U-NET模型,该模型可以通过空间反卷积来抑制背景噪声并将CAR诱导的DAS信号压缩到高分辨率脉冲中。我们的工作通过引入三个关键进步扩展了最近的研究。首先,我们对DAS录制的交通信号进行了全面的分辨率分析,为我们的方法奠定了理论基础。其次,我们将空间域车辆小波纳入U-NET模型中,无论车速变化如何,都可以使一致的高分辨率输出。最后,我们在损失功能中采用L-2规范正规化,从而增强了模型对偏远交通车道中车辆较弱的信号的敏感性。我们通过在不同的交通条件和各种驾驶速度下的现场记录来评估方法的有效性和鲁棒性。我们的结果表明,我们的方法可以增强空间分辨率并更好地解决远程行驶的汽车。空间反卷积U-NET模型还使大型车辆的表征能够识别轴数并估计车辆长度。监视大型车辆还通过利用动态车辆相互作用引起的表面波,从而使成像地球受益。
Distributed Acoustic Sensing (DAS) that transforms city-wide fiber-optic cables into a large-scale strain sensing array has shown the potential to revolutionize urban traffic monitoring by providing a fine-grained, scalable, and low-maintenance monitoring solution. However, the real-world application of DAS is hindered by challenges such as noise contamination and interference among closely traveling cars. In response, we introduce a self-supervised U-Net model that can suppress background noise and compress car-induced DAS signals into high-resolution pulses through spatial deconvolution. Our work extends recent research by introducing three key advancements. Firstly, we perform a comprehensive resolution analysis of DAS-recorded traffic signals, laying a theoretical foundation for our approach. Secondly, we incorporate space-domain vehicle wavelets into our U-Net model, enabling consistent high-resolution outputs regardless of vehicle speed variations. Finally, we employ L-2 norm regularization in the loss function, enhancing our model's sensitivity to weaker signals from vehicles in remote traffic lanes. We evaluate the effectiveness and robustness of our method through field recordings under different traffic conditions and various driving speeds. Our results show that our method can enhance the spatial-temporal resolution and better resolve closely traveling cars. The spatial deconvolution U-Net model also enables the characterization of large-size vehicles to identify axle numbers and estimate the vehicle length. Monitoring large-size vehicles also benefits imaging deep earth by leveraging the surface waves induced by the dynamic vehicle-road interaction.