论文标题
通过AI信息的X射线光子相关光谱法阐明了超越平衡的弛豫动力学
Elucidation of Relaxation Dynamics Beyond Equilibrium Through AI-informed X-ray Photon Correlation Spectroscopy
论文作者
论文摘要
理解和解释功能材料的动力学\ textit {原位}是物理和材料科学的巨大挑战,因为难以在不同的长度和时间范围内实验探测材料。 X射线光子相关光谱(XPC)非常适合表征材料动力学在广泛的时间尺度上,但是材料行为中的空间和时间异质性可以使实验性XPC数据的解释变得困难。在这项工作中,我们开发了一个无监督的深度学习(DL)框架,用于从实验数据中对放松动态的自动分类和解释,而无需先前对系统行为进行任何物理知识。我们演示了如何使用此方法来快速探索大型数据集以识别感兴趣的样本,并应用这种方法直接将模型系统的批量特性与微观动力学相关联。重要的是,该DL框架是材料和过程不可知论,标志着迈向自动材料发现的具体步骤。
Understanding and interpreting dynamics of functional materials \textit{in situ} is a grand challenge in physics and materials science due to the difficulty of experimentally probing materials at varied length and time scales. X-ray photon correlation spectroscopy (XPCS) is uniquely well-suited for characterizing materials dynamics over wide-ranging time scales, however spatial and temporal heterogeneity in material behavior can make interpretation of experimental XPCS data difficult. In this work we have developed an unsupervised deep learning (DL) framework for automated classification and interpretation of relaxation dynamics from experimental data without requiring any prior physical knowledge of the system behavior. We demonstrate how this method can be used to rapidly explore large datasets to identify samples of interest, and we apply this approach to directly correlate bulk properties of a model system to microscopic dynamics. Importantly, this DL framework is material and process agnostic, marking a concrete step towards autonomous materials discovery.