论文标题
长生不老药:在视频流上增强多个分析的数据质量的系统
Elixir: A system to enhance data quality for multiple analytics on a video stream
论文作者
论文摘要
物联网传感器,尤其是摄像机,在世界范围内部署无处不在,在包括零售,医疗保健,安全和安全,运输,制造,制造等的几个垂直领域执行各种计算机视觉任务,以使他们的高部署工作和成本摊销,这是值得访问的视频分析的,我们可以在各个视频中进行访问(Anally Onally Units)(Aus Us food food forefore fef fef fef fef fef)。在本文中,我们首先表明,在多AU设置中,更改相机设置对不同的AUS性能的影响不成比例。特别是,一个AU的最佳设置可能会严重降低另一个AU的性能,并且会随着环境条件的变化而进一步影响不同的AU的影响。然后,我们提出Elixir,这是一个可以增强视频流的视频流质量的系统。长生不老药利用多目标增强学习(MORL),RL代理符合来自不同AUS的目标,并调整相机设置以同时增强所有AUS的性能。为了定义Morl中的多个目标,我们为每个AU开发了新的AU特异性质量估计值。我们通过在测试床上进行的现实实验评估长生不老药,该测试床,三个相互部署的摄像头(俯瞰大型企业停车场)分别运行长生不老药和两个基线方法。长生不老药正确地检测到7.1%(22,068)和5.0%(15,731)个汽车,94%(551)和72%(478)的面孔,以及670.4%(4975)和158.6%(4975)和158.6%(3507)的人,分别是违约和时间差的方法。它还检测到115个车牌,远远超过时间共享方法(7)和默认设置(0)。
IoT sensors, especially video cameras, are ubiquitously deployed around the world to perform a variety of computer vision tasks in several verticals including retail, healthcare, safety and security, transportation, manufacturing, etc. To amortize their high deployment effort and cost, it is desirable to perform multiple video analytics tasks, which we refer to as Analytical Units (AUs), off the video feed coming out of every camera. In this paper, we first show that in a multi-AU setting, changing the camera setting has disproportionate impact on different AUs performance. In particular, the optimal setting for one AU may severely degrade the performance for another AU, and further the impact on different AUs varies as the environmental condition changes. We then present Elixir, a system to enhance the video stream quality for multiple analytics on a video stream. Elixir leverages Multi-Objective Reinforcement Learning (MORL), where the RL agent caters to the objectives from different AUs and adjusts the camera setting to simultaneously enhance the performance of all AUs. To define the multiple objectives in MORL, we develop new AU-specific quality estimator values for each individual AU. We evaluate Elixir through real-world experiments on a testbed with three cameras deployed next to each other (overlooking a large enterprise parking lot) running Elixir and two baseline approaches, respectively. Elixir correctly detects 7.1% (22,068) and 5.0% (15,731) more cars, 94% (551) and 72% (478) more faces, and 670.4% (4975) and 158.6% (3507) more persons than the default-setting and time-sharing approaches, respectively. It also detects 115 license plates, far more than the time-sharing approach (7) and the default setting (0).