论文标题
太空:通过交互潜在空间编辑将人类知识纳入深度神经网络
SpaceEditing: Integrating Human Knowledge into Deep Neural Networks via Interactive Latent Space Editing
论文作者
论文摘要
我们提出了一种交互式编辑方法,该方法允许人类帮助深度神经网络(DNN)学习一个与人类知识更一致的潜在空间,从而提高了无法区分的歧义数据的分类准确性。首先,我们通过减少维度的方法可视化高维数据特征,并设计一个交互式系统\ textIt {SpaceEditing}以显示可视化的数据。 \ textIt {SpaceEditing}根据空间布局的概念提供了一个2D工作空间。在此工作空间中,用户可以根据系统指南移动其投影数据。然后,根据用户移动的投影数据,\ textIt {SpaceEditing}将找到相应的高维特征,并将高维功能送回网络以进行重新培训,因此实现了用户交互修改用户的高维潜在空间的目的。其次,要更合理地将人类知识纳入神经网络的训练过程中,我们设计了一种新的损失功能,使网络能够学习用户修改的信息。最后,我们演示了\ textit {spaceediting}如何通过三个案例研究满足用户需求,同时评估我们提出的新方法,结果证实了我们方法的有效性。
We propose an interactive editing method that allows humans to help deep neural networks (DNNs) learn a latent space more consistent with human knowledge, thereby improving classification accuracy on indistinguishable ambiguous data. Firstly, we visualize high-dimensional data features through dimensionality reduction methods and design an interactive system \textit{SpaceEditing} to display the visualized data. \textit{SpaceEditing} provides a 2D workspace based on the idea of spatial layout. In this workspace, the user can move the projection data in it according to the system guidance. Then, \textit{SpaceEditing} will find the corresponding high-dimensional features according to the projection data moved by the user, and feed the high-dimensional features back to the network for retraining, therefore achieving the purpose of interactively modifying the high-dimensional latent space for the user. Secondly, to more rationally incorporate human knowledge into the training process of neural networks, we design a new loss function that enables the network to learn user-modified information. Finally, We demonstrate how \textit{SpaceEditing} meets user needs through three case studies while evaluating our proposed new method, and the results confirm the effectiveness of our method.