论文标题
Stampacchia引理和应用的概括
A Generalization of Stampacchia Lemma and Applications
论文作者
论文摘要
我们介绍了踩踏引理的概括,并将其应用于弱和熵解决方案的规律性属性,椭圆形方程的零件和熵解决方案的形式$$ \ weft \ left \ {\ oken {array} {llll} {llll} {llll} - \ mbox {div} u(x)= 0,&\ mbox {on} \ partialω,\ end {array} \ right。 $$其中$$ \fracα{(1+ | u |) ^θ} \ le a(x,s)\ leβ$$,带有$ 0 <α\leβ<\ inby undty $和$ 0 \ lethleθ<1 $。
We present a generalization of Stampacchia Lemma and give applications to regularity property of weak and entropy solutions of degenerate elliptic equations of the form $$ \left\{ \begin{array}{llll} -\mbox{div} (a(x,u(x)) Du (x)) =f(x), & \mbox { in } Ω, \\ u(x)=0, & \mbox { on } \partial Ω, \end{array} \right. $$ where $$ \frac α{(1+|u|) ^θ} \le a(x,s)\le β$$ with $0<α\le β<\infty$ and $0\le θ<1$.