论文标题

联合RIS校准和多用户定位

Joint RIS Calibration and Multi-User Positioning

论文作者

Lu, Yi, Chen, Hui, Talvitie, Jukka, Wymeersch, Henk, Valkama, Mikko

论文摘要

可重新配置的智能表面(RISS)预计将是一个关键组件,可以使移动网络发展到灵活且智能的6G无线平台。在到目前为止的大多数研究中,RIS在其位置和取向方面都被视为具有已知状态的被动基站(BS),以提高通信和/或终端定位性能。但是,当RIS状态不完全了解时,不能保证这种性能的增长。在本文中,通过考虑RIS状态的不确定性,我们制定并研究了联合RIS校准和用户定位(JRCUP)方案的性能。从Fisher信息的角度来看,我们在以网络单输出多数输出(SIMO)方案中制定了JRCUP问题,并使用单个BS制定了JRCUP问题,并为用户和RIS的状态提供了分析下限。我们还展示了不同用户位置对JRCUP性能的几何影响,同时还表征了不同RIS大小下的性能。最后,该研究扩展到多用户方案,该方案可进一步提高状态估计绩效。

Reconfigurable intelligent surfaces (RISs) are expected to be a key component enabling the mobile network evolution towards a flexible and intelligent 6G wireless platform. In most of the research works so far, RIS has been treated as a passive base station (BS) with a known state, in terms of its location and orientation, to boost the communication and/or terminal positioning performance. However, such performance gains cannot be guaranteed anymore when the RIS state is not perfectly known. In this paper, by taking the RIS state uncertainty into account, we formulate and study the performance of a joint RIS calibration and user positioning (JrCUP) scheme. From the Fisher information perspective, we formulate the JrCUP problem in a network-centric single-input multiple-output (SIMO) scenario with a single BS, and derive the analytical lower bound for the states of both user and RIS. We also demonstrate the geometric impact of different user locations on the JrCUP performance while also characterizing the performance under different RIS sizes. Finally, the study is extended to a multi-user scenario, shown to further improve the state estimation performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源