论文标题
激子基态结构和激发状态的景观在分层的卤化物钙化物中,来自联合BSE模拟和对称分析
Exciton ground state fine structure and excited states landscape in layered halide perovskites from combined BSE simulations and symmetry analysis
论文作者
论文摘要
分层卤化物钙钛矿是溶液处理的天然异质结构,量子和介电限制效应降低到纳米级强烈影响光学特性,从而导致绑定的激子的稳定。对激子特性有详细的了解对于在能量转换和光发射应用中提高这些材料的开发至关重要,而当前正在进行的辩论与最稳定的激子的四个组成部分的能量顺序有关。为了在对比鲜明的文献报告中提供理论反馈和解决,我们在此处执行Bethe Salpeter方程(BSE)的Ab-Initio解决方案,并详细解释了基于对称性分析的光谱可观察结果。我们证实了埃德克<ein平面<面向范围的细微结构分配,如最近的磁吸附实验。我们进一步建议,极性扭曲可能导致平面成分的稳定,并最终在明亮的最低激子成分中终止。此外,我们讨论了在广泛的能量范围内的激子景观,并阐明激发型旋转耦合时的激子自旋特性,以合理化卤化物钙钛矿作为三重态敏化剂与有机染料结合使用。除了有助于当前对分层卤化物钙钛矿的激子特性的理解之外,这项工作还进一步证明了通过将高级AB-Initio仿真和群体理论相结合而获得的深入知识。
Layered halide perovskites are solution-processed natural heterostructures where quantum and dielectric confinement effects down to the nanoscale strongly influence the optical properties, leading to stabilization of bound excitons. Achieving a detailed understanding of the exciton properties is crucial to boost the exploitation of these materials in energy conversion and light emission applications, with current on-going debate related to the energy order of the four components of the most stable exciton. To provide theoretical feedback and solve among contrasting literature reports, we perform here ab-initio solution of the Bethe Salpeter Equation (BSE), with detailed interpretation of the spectroscopic observables based on symmetry-analysis. We confirm the Edark < Ein plane < Eout-of-plane fine-structure assignment, as from recent magneto-absorption experiments. We further suggest that polar distortions may lead to stabilization of the in-plane component and ultimately end-up in a bright lowest exciton component. Also, we discuss the exciton landscape over a broad energy range and clarify the exciton spin-character, when large spin-orbit coupling is in play, to rationalize the potential of halide perovskites as triplet sensitizers in combination with organic dyes. In addition to contributing to the current understanding of the exciton properties of layered halide perovskites, the work further evidence the in-depth knowledge gained by combining advanced ab-initio simulations and group theory.