论文标题
使用频域信息的尺度 - 肢体图像超分辨率网络
A Scale-Arbitrary Image Super-Resolution Network Using Frequency-domain Information
论文作者
论文摘要
图像超分辨率(SR)是一种在低分辨率(LR)图像中恢复丢失的高频信息的技术。空间域信息已被广泛利用以实现图像SR,因此一种新趋势是涉及SR任务中的频域信息。此外,图像SR通常以应用程序为导向,各种计算机视觉任务要求图像任意放大。因此,在本文中,我们研究了频域中的图像特征,以设计新型的衡量标准图像SR网络。首先,我们在不同的量表因子下统计分析了几个数据集的LR-HR图像对,并发现在不同规模因素下,不同图像的高频光谱遭受不同降解程度的降解程度,但是有效的低频光谱倾向于将其保留在一定的分布范围内。然后,基于这一发现,我们使用深入的增强学习设计了一种自适应量表感知的特征分裂机理,该机制可以准确,适应地将频谱分为要保留的低频部分,并将其回收高频。最后,我们设计了一个比例感知功能恢复模块,以捕获和融合多层次功能,以重建任意尺度因子的高频频谱。公共数据集上的广泛实验表明,与最先进的方法相比,我们方法的优越性。
Image super-resolution (SR) is a technique to recover lost high-frequency information in low-resolution (LR) images. Spatial-domain information has been widely exploited to implement image SR, so a new trend is to involve frequency-domain information in SR tasks. Besides, image SR is typically application-oriented and various computer vision tasks call for image arbitrary magnification. Therefore, in this paper, we study image features in the frequency domain to design a novel scale-arbitrary image SR network. First, we statistically analyze LR-HR image pairs of several datasets under different scale factors and find that the high-frequency spectra of different images under different scale factors suffer from different degrees of degradation, but the valid low-frequency spectra tend to be retained within a certain distribution range. Then, based on this finding, we devise an adaptive scale-aware feature division mechanism using deep reinforcement learning, which can accurately and adaptively divide the frequency spectrum into the low-frequency part to be retained and the high-frequency one to be recovered. Finally, we design a scale-aware feature recovery module to capture and fuse multi-level features for reconstructing the high-frequency spectrum at arbitrary scale factors. Extensive experiments on public datasets show the superiority of our method compared with state-of-the-art methods.