论文标题
DRED:使用速率优化的变异自动编码器对语音进行深度冗余编码
DRED: Deep REDundancy Coding of Speech Using a Rate-Distortion-Optimized Variational Autoencoder
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Despite recent advancements in packet loss concealment (PLC) using deep learning techniques, packet loss remains a significant challenge in real-time speech communication. Redundancy has been used in the past to recover the missing information during losses. However, conventional redundancy techniques are limited in the maximum loss duration they can cover and are often unsuitable for burst packet loss. We propose a new approach based on a rate-distortion-optimized variational autoencoder (RDO-VAE), allowing us to optimize a deep speech compression algorithm for the task of encoding large amounts of redundancy at very low bitrate. The proposed Deep REDundancy (DRED) algorithm can transmit up to 50x redundancy using less than 32 kb/s. Results show that DRED outperforms the existing Opus codec redundancy. We also demonstrate its benefits when operating in the context of WebRTC.