论文标题
黑洞播种和当前调查的黑洞播种和生长模型上的矮星系的约束
Constraints from dwarf galaxies on black hole seeding and growth models with current and future surveys
论文作者
论文摘要
矮星系是通过其黑洞占用分数(BHOF)来约束超质量和中间质量黑洞(MBH)模型的有前途的测试床。在哈勃时期,质量组装的混杂作用脱离播种是一个具有挑战性的问题,我们在这项研究中使用一套半分析模型(SAMS)来解决。我们展示了测得的BHOF如何取决于调查获得的最低黑洞质量或AGN光度。为了区分播种模型,我们需要检测或建模所有AGN比$ 10^{37} \ \ rm {erg \ s^{ - 1}} $在$ M_* \ sim 10^{8-10} {8-10} \ \ \ \ rm {m_ _ {m_ _ {\ odot}} $的星系中。较浅的调查,例如橡皮泥,即使通过更大的调查量补偿了种子模型也无法区分种子模型。我们表明,娱乐调查的推断,它推断了观察到的AGN的MBH种群,强烈偏爱重种子模型,以幂律爱丁顿比率分布函数(ERDF)或将黑洞积聚标记为恒星形成率(AGN-MS)的重型种子模型。然后,这两个增长通道可以通过$>> 10^{40} \ rm {erg \ s^{ - 1}} $区分,而AGN-MS模型需要比z $ \ sim $ 0观察到的AGN-MS模型更多的增值。不同的模型还预测了不同的无线电扩展关系,我们使用黑洞活动的基本平面对其进行了量化。我们将对即将到来的多波长广告系列的设计提出建议,这些活动可以最佳地检测矮星系中的MBH。
Dwarf galaxies are promising test beds for constraining models of supermassive and intermediate-mass black holes (MBH) via their black hole occupation fraction (BHOF). Disentangling seeding from the confounding effects of mass assembly over a Hubble time is a challenging problem, that we tackle in this study with a suite of semi-analytical models (SAMs). We show how measured BHOF depends on the lowest black hole mass or AGN luminosity achieved by a survey. To tell seeding models apart, we need to detect or model all AGN brighter than $10^{37}\ \rm{erg \ s^{-1}}$ in galaxies of $M_* \sim 10^{8-10} \ \rm{M_{\odot}}$. Shallower surveys, like eRASS, cannot distinguish between seed models even with the compensation of a much larger survey volume. We show that the AMUSE survey, with its inference of the MBH population underlying the observed AGN, strongly favors heavy seed models, growing with either a power-law Eddington Ratio Distribution Function (ERDF) or one in which black hole accretion is tagged to the star-formation rate (AGN-MS). These two growth channels can then be distinguished by the AGN luminosity function at $> 10^{40}\ \rm{erg \ s^{-1}}$, with the AGN-MS model requiring more accretion than observed at z $\sim$ 0. Thus, current X-ray observations favour heavy seeds whose Eddington ratios follow a power-law distribution. The different models also predict different radio scaling relations, which we quantify using the fundamental plane of black hole activity. We close with recommendations for the design of upcoming multi-wavelength campaigns that can optimally detect MBHs in dwarf galaxies.