论文标题
基于FPGA的闭环反馈应用程序的体内钙图像解码
FPGA-Based In-Vivo Calcium Image Decoding for Closed-Loop Feedback Applications
论文作者
论文摘要
微型钙成像是一种新兴的神经记录技术,已广泛用于在大鼠或小鼠的特定大脑区域大规模监测神经活动。大多数现有的钙图像分析管道脱机运行。这导致了较长的处理潜伏期,因此很难实现闭环反馈刺激以进行大脑研究。在最近的工作中,我们为闭环反馈应用程序提出了基于FPGA的实时钙图像处理管道。它可以执行实时钙图像运动校正,增强,快速痕量提取以及从提取的痕迹中进行实时解码。在这里,我们通过提出各种基于神经网络的方法来实时解码并评估这些解码方法和加速器设计之间的权衡。我们在FPGA上介绍了基于神经网络的解码器的实施,并展示了他们对ARM处理器实施的加速。我们的FPGA实现使闭环反馈应用程序的子MS处理延迟实现实时钙图像解码。
Miniaturized calcium imaging is an emerging neural recording technique that has been widely used for monitoring neural activity on a large scale at a specific brain region of rats or mice. Most existing calcium-image analysis pipelines operate offline. This results in long processing latency, making it difficult to realize closed-loop feedback stimulation for brain research. In recent work, we have proposed an FPGA-based real-time calcium image processing pipeline for closed-loop feedback applications. It can perform real-time calcium image motion correction, enhancement, fast trace extraction, and real-time decoding from extracted traces. Here, we extend this work by proposing a variety of neural network based methods for real-time decoding and evaluate the tradeoff among these decoding methods and accelerator designs. We introduced the implementation of the neural network based decoders on the FPGA, and showed their speedup against the implementation on the ARM processor. Our FPGA implementation enables the real-time calcium image decoding with sub-ms processing latency for closed-loop feedback applications.