论文标题

基于机器学习的测试选择,用于基于模拟的自动驾驶汽车软件测试

Machine Learning-based Test Selection for Simulation-based Testing of Self-driving Cars Software

论文作者

Birchler, Christian, Khatiri, Sajad, Bosshard, Bill, Gambi, Alessio, Panichella, Sebastiano

论文摘要

仿真平台促进了新兴网络物理系统(CPS)(例如自动驾驶汽车(SDC))的开发,因为它们比现场操作测试案例更有效,更危险。尽管如此,在模拟环境中进行彻底测试的SDC仍然具有挑战性,因为必须在长期运行的测试用例中测试SDC。过去的软件测试优化结果表明,并非所有的测试用例都同等地建立对测试对象的质量和可靠性的信心,并且可以跳过“安全且无信息”的测试用例以减少测试工作。但是,此问题仅在SDC仿真平台的上下文中得到部分解决。在本文中,我们研究了测试选择策略,以提高在SDC中基于模拟测试的成本效益。我们提出了一种称为SDC-SCISSOR(SDC成本效益测试选择器)的方法,该方法利用机器学习(ML)策略来识别和跳过测试案例,而测试案例不太可能在执行之前检测到SDC中的故障。 我们的评估表明,SDC-Scissor的表现优于基准。借助Logistic模型,我们的精度为70%,精度为65%,在选择测试的80%的召回中,导致故障并提高了测试成本效益。具体而言,SDC-Scissor避免执行50%不必要的测试,并且表现优于两种基线策略。与现有工作相辅相成,我们还将SDC-Scissor集成到汽车领域的工业组织的背景下,以证明如何在工业环境中使用。

Simulation platforms facilitate the development of emerging Cyber-Physical Systems (CPS) like self-driving cars (SDC) because they are more efficient and less dangerous than field operational test cases. Despite this, thoroughly testing SDCs in simulated environments remains challenging because SDCs must be tested in a sheer amount of long-running test cases. Past results on software testing optimization have shown that not all the test cases contribute equally to establishing confidence in test subjects' quality and reliability, and the execution of "safe and uninformative" test cases can be skipped to reduce testing effort. However, this problem is only partially addressed in the context of SDC simulation platforms. In this paper, we investigate test selection strategies to increase the cost-effectiveness of simulation-based testing in the context of SDCs. We propose an approach called SDC-Scissor (SDC coSt-effeCtIve teSt SelectOR) that leverages Machine Learning (ML) strategies to identify and skip test cases that are unlikely to detect faults in SDCs before executing them. Our evaluation shows that SDC-Scissor outperforms the baselines. With the Logistic model, we achieve an accuracy of 70%, a precision of 65%, and a recall of 80% in selecting tests leading to a fault and improved testing cost-effectiveness. Specifically, SDC-Scissor avoided the execution of 50% of unnecessary tests as well as outperformed two baseline strategies. Complementary to existing work, we also integrated SDC-Scissor into the context of an industrial organization in the automotive domain to demonstrate how it can be used in industrial settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源