论文标题

与Lorenz-Mie粒子的光相互作用的量子理论:光学检测和三维基础冷却

Quantum theory of light interaction with a Lorenz-Mie particle: Optical detection and three-dimensional ground-state cooling

论文作者

Maurer, Patrick, Gonzalez-Ballestero, Carlos, Romero-Isart, Oriol

论文摘要

从理论上讲,我们分析了悬浮的介电球的运动量子动力学,该动力学与点偶极近似之外的量子电磁场相互作用。为此,我们得出了一个哈密顿量,描述了光子和质量声子之间的基本耦合,包括stokes和anti-stokes过程,以及任意折射率和大小的介电范围的耦合速率。然后,我们得出激光后坐力加热速率和信息辐射模式(带有有关质量中心运动的信息的散射光的角度分布),并显示如何在有浓缩激光束的存在下有效地评估它们,这是在运行或站立波配置中。该信息对于实施光学上的介电球的主动反馈冷却至关重要,这至关重要。我们的结果预测了几种实验可行的配置和参数状态,在这些配置和参数方案中,光学检测和主动反馈可以同时冷却基地状态,即在千分尺状态下介电球的三维质量运动中心运动。扩大可以冷却至质量基态底部介电颗粒的质量,不仅与在大尺度上测试量子力学相关,而且还与使用光学悬浮的传感器一起搜索新物理学(例如,暗物质)的当前实验努力。

We analyze theoretically the motional quantum dynamics of a levitated dielectric sphere interacting with the quantum electromagnetic field beyond the point-dipole approximation. To this end, we derive a Hamiltonian describing the fundamental coupling between photons and center-of-mass phonons, including Stokes and anti-Stokes processes, and the coupling rates for a dielectric sphere of arbitrary refractive index and size. We then derive the laser recoil heating rates and the information radiation patterns (the angular distribution of the scattered light that carries information about the center-of-mass motion) and show how to evaluate them efficiently in the presence of a focused laser beam, in either a running- or a standing-wave configuration. This information is crucial to implement active feedback cooling of optically levitated dielectric spheres beyond the point-dipole approximation. Our results predict several experimentally feasible configurations and parameter regimes where optical detection and active feedback can simultaneously cool to the ground state the three-dimensional center-of-mass motion of dielectric spheres in the micrometer regime. Scaling up the mass of the dielectric particles that can be cooled to the center-of-mass ground state is relevant not only for testing quantum mechanics at large scales but also for current experimental efforts that search for new physics (e.g., dark matter) using optically levitated sensors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源