论文标题
具有和没有RFECV功能选择技术的可解释机器学习模型的比较性能分析用于勒索软件分类
A Comparative Performance Analysis of Explainable Machine Learning Models With And Without RFECV Feature Selection Technique Towards Ransomware Classification
论文作者
论文摘要
最近几天,勒索软件已成为全球主要威胁之一。勒索软件攻击和新的勒索软件变体的令人震惊的提高率使该领域的研究人员兴趣不断研究勒索软件的区别特征并完善其检测或分类策略。在广泛的不同行为特征中,应用程序编程接口(API)呼叫和网络行为的特征已被广泛用作勒索软件检测或分类的区分因素。尽管许多先前的方法已经显示出令人鼓舞的结果,从而在检测和分类勒索软件系列的情况下使用这些功能而不应用任何功能选择技术,但是特征选择是朝着有效的检测或分类机器学习模型的潜在步骤之一,因为它可以通过删除冗余数据来降低过度拟合的冗余数据,从而可以通过冗余数据进行冗余的训练,从而可以通过毫无层次的功能,从而改善了无效的时间,并改善了时间,并改善了时间,并改善了时间,并改善了时间,并改善了时间,并改善了时间,并改善了时间,从而改善了该模型。迄今为止,已经有大量的功能选择技术在不同的安全方案中使用,以优化机器学习模型的性能。因此,本研究的目的是介绍使用API呼叫和网络流量功能的勒索软件分类的,有或不使用RFECV功能选择技术的广泛使用的机器学习模型的比较性能分析。因此,这项研究提供了有关RANSOMWARE分类的RFECV特征选择技术效率的洞察力,同龄人可以将其用作未来在此域中选择特征选择技术的参考。
Ransomware has emerged as one of the major global threats in recent days. The alarming increasing rate of ransomware attacks and new ransomware variants intrigue the researchers in this domain to constantly examine the distinguishing traits of ransomware and refine their detection or classification strategies. Among the broad range of different behavioral characteristics, the trait of Application Programming Interface (API) calls and network behaviors have been widely utilized as differentiating factors for ransomware detection, or classification. Although many of the prior approaches have shown promising results in detecting and classifying ransomware families utilizing these features without applying any feature selection techniques, feature selection, however, is one of the potential steps toward an efficient detection or classification Machine Learning model because it reduces the probability of overfitting by removing redundant data, improves the model's accuracy by eliminating irrelevant features, and therefore reduces training time. There have been a good number of feature selection techniques to date that are being used in different security scenarios to optimize the performance of the Machine Learning models. Hence, the aim of this study is to present the comparative performance analysis of widely utilized Supervised Machine Learning models with and without RFECV feature selection technique towards ransomware classification utilizing the API call and network traffic features. Thereby, this study provides insight into the efficiency of the RFECV feature selection technique in the case of ransomware classification which can be used by peers as a reference for future work in choosing the feature selection technique in this domain.