论文标题

修改的序列到点的HVAC负载分解算法

A Modified Sequence-to-point HVAC Load Disaggregation Algorithm

论文作者

Ye, Kai, Kim, Hyeonjin, Hu, Yi, Lu, Ning, Wu, Di, Rehm, PJ

论文摘要

本文介绍了一种修改的序列到点(S2P)算法,用于分解与总建筑物电力消耗的热量,通风和空调(HVAC)负载。原始的S2P模型是基于卷积神经网络(CNN),它使用负载概况作为输入。我们提出了三个修改。首先,输入卷积层从1D更改为2D,因此也将归一化的温度轮廓还用作S​​2P模型的输入。其次,添加了一个辍学层以提高适应性和概括性,以便可以将在一个区域训练的模型转移到其他地理区域,而无需标记HVAC数据。第三,针对具有少量标记的HVAC数据的区域提出了一个微调过程,以便可以对预培训的S2P模型进行微调以实现其他领域的更高分类准确性(即更好的可传递性)。该模型首先是使用德克萨斯州奥斯汀收集的智能电表和次级计数器数据进行训练和测试的。然后,训练有素的模型在其他两个领域进行了测试:科罗拉多州的博尔德和加利福尼亚州圣地亚哥。仿真结果表明,所提出的修改后的S2P算法在准确性,适应性和可传递性方面优于原始S2P模型和基于支持矢量机器的方法。

This paper presents a modified sequence-to-point (S2P) algorithm for disaggregating the heat, ventilation, and air conditioning (HVAC) load from the total building electricity consumption. The original S2P model is convolutional neural network (CNN) based, which uses load profiles as inputs. We propose three modifications. First, the input convolution layer is changed from 1D to 2D so that normalized temperature profiles are also used as inputs to the S2P model. Second, a drop-out layer is added to improve adaptability and generalizability so that the model trained in one area can be transferred to other geographical areas without labelled HVAC data. Third, a fine-tuning process is proposed for areas with a small amount of labelled HVAC data so that the pre-trained S2P model can be fine-tuned to achieve higher disaggregation accuracy (i.e., better transferability) in other areas. The model is first trained and tested using smart meter and sub-metered HVAC data collected in Austin, Texas. Then, the trained model is tested on two other areas: Boulder, Colorado and San Diego, California. Simulation results show that the proposed modified S2P algorithm outperforms the original S2P model and the support-vector machine based approach in accuracy, adaptability, and transferability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源