论文标题
惯性波湍流中三合会相互作用和kolmogorov常数的局部性
Locality of triad interaction and Kolmogorov constant in inertial wave turbulence
论文作者
论文摘要
使用波湍流理论,用于加尔蒂(Galtier,2003)得出的快速旋转不可压缩的流体,我们发现动力学方程溶液必须满足的局部性条件。我们表明,精确的各向异性Kolmogorov-Zakharov(Kz)光谱满足了这些条件,这证明了这种常数(正)能量通量溶液的存在。尽管在横向($ \ perp $)和并行($ \ parallel $)方向上预测了直接级联反应,但我们从数值上表明,在后一种情况下,某些三合会相互作用可能会对能量通量产生负面影响,而在前一种情况下,所有相互作用都会导致正磁磁性。忽略了平行的能量通量,我们估计$ C_K \ simeq 0.749 $的Kolmogorov常数。这些结果为最近的数值和实验研究提供了理论支持。
Using the theory of wave turbulence for rapidly rotating incompressible fluids derived by Galtier (2003), we find the locality conditions that the solutions of the kinetic equation must satisfy. We show that the exact anisotropic Kolmogorov-Zakharov (KZ) spectrum satisfies these conditions, which justifies the existence of this constant (positive) energy flux solution. Although a direct cascade is predicted in the transverse ($\perp$) and parallel ($\parallel$) directions to the rotation axis, we show numerically that in the latter case some triadic interactions can have a negative contribution to the energy flux, while in the former case all interactions contribute to a positive flux. Neglecting the parallel energy flux, we estimate the Kolmogorov constant at $C_K \simeq 0.749$. These results provide theoretical support for recent numerical and experimental studies.