论文标题
k规范分区函数模型复合整数M的分布
Distribution of the k-regular partition function modulo composite integers M
论文作者
论文摘要
令$ b_k(n)$表示自然数$ n $的$ k- $常规partiton。在本文中,我们研究了$ b_k(n)$ modulo复合整数$ m $的行为,该整数为$ 6 $。特别是,我们证明,对于任意$ k- $常规partiton函数$ b_k(n)$和整数$ m $ $ coprime至$ 6 $,有许多$ b_k(n)$ modulo $ m $的无限ramanujan型一致性。
Let $b_k(n)$ denote the $k-$regular partitons of a natural number $n$. In this paper, we study the behavior of $b_k(n)$ modulo composite integers $M$ which are coprime to $6$. Specially, we prove that for arbitrary $k-$regular partiton function $b_k(n)$ and integer $M$ coprime to $6$, there are infinitely many Ramanujan-type congruences of $b_k(n)$ modulo $M$.