论文标题

Bernoulli模型的顺序多疗法测试的数值方法

A Numerical Approach to Sequential Multi-Hypothesis Testing for Bernoulli Model

论文作者

Novikov, Andrey

论文摘要

在本文中,我们处理了多个假设的顺序检验问题。主要目标是最大程度地减少对误差概率限制的预期样本量(ESS)。 作为最小化的标准,我们将ESS的加权总和在参数空间的某些兴趣点上进行了评估,该参数空间旨在在误差概率的限制下针对其最小化。 我们使用Lagrange乘数方法的变体,该变体基于将目标函数与限制的辅助目标函数(称为Lagrangian)的最小化,并使用一些称为乘数的常数进行限制。随后,乘数用于使解决方案符合限制。 我们开发了一种面向计算机的Lagrangian函数最小化方法,该方法根据参数点的特定选择,在不同混凝土设置中的最佳测试提供,例如在贝叶斯,Kiefer-Weiss和其他设置中。 为了说明从伯努利人群采样的特定情况的提议方法,我们开发了一组计算机算法,用于设计顺序测试,以最大程度地减少Lagrangian函数以及对误差概率和ESS等测试特征的数值评估以及其他相关的测试特征。我们以R编程语言实现算法。该程序代码可在公共GitHub存储库中获得。 对于Bernoulli模型,在特定的三种假设的特定情况下,我们进行了一系列与顺序多肢体测试的最佳性有关的计算机评估。与矩阵顺序概率比测试进行了数值比较。 提出了一种多杂种性kiefer-weiss解决方案的方法,并适用于伯努利模型中三个假设的特定情况。

In this paper we deal with the problem of sequential testing of multiple hypotheses. The main goal is minimizing the expected sample size (ESS) under restrictions on the error probabilities. We take, as a criterion of minimization, a weighted sum of the ESS's evaluated at some points of interest in the parameter space aiming at its minimization under restrictions on the error probabilities. We use a variant of the method of Lagrange multipliers which is based on the minimization of an auxiliary objective function (called Lagrangian) combining the objective function with the restrictions, taken with some constants called multipliers. Subsequently, the multipliers are used to make the solution comply with the restrictions. We develop a computer-oriented method of minimization of the Lagrangian function, that provides, depending on the specific choice of the parameter points, optimal tests in different concrete settings, like in Bayesian, Kiefer-Weiss and other settings. To exemplify the proposed methods for the particular case of sampling from a Bernoulli population we develop a set of computer algorithms for designing sequential tests that minimize the Lagrangian function and for the numerical evaluation of test characteristics like the error probabilities and the ESS, and other related. We implement the algorithms in the R programming language. The program code is available in a public GitHub repository. For the Bernoulli model, we made a series of computer evaluations related to the optimality of sequential multi-hypothesis tests, in a particular case of three hypotheses. A numerical comparison with the matrix sequential probability ratio test is carried out. A method of solution of the multi-hypothesis Kiefer-Weiss is proposed, and is applied for a particular case of three hypotheses in the Bernoulli model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源