论文标题

使用弗兰克·沃尔夫(Frank-Wolfe)在预算限制下的最佳影响者营销活动

Optimal Influencer Marketing Campaign Under Budget Constraints Using Frank-Wolfe

论文作者

Lopez-Dawn, Ricardo, Giovanidis, Anastasios

论文摘要

有影响力的营销已成为一个蓬勃发展的行业,到2022年,全球市场价值预计将达到150亿美元。该机构面临的广告问题是:鉴于货币预算找到一组适当的影响者,可以创建和发布各种类型的帖子(例如,文本,图像,图像,视频)来推广目标产品。该活动的目标是在一个或多个在线社交平台上最大化某些感兴趣的指标,例如印象,销售(ROI)或受众范围的数量。在这项工作中,我们提出了预算有影响力的营销问题作为凸面计划的原始连续制定。我们进一步提出了一种基于Frank-Wolfe方法的有效迭代算法,该算法会收敛到全局最佳效果,并且计算复杂性较低。我们还建议一个更简单的经验法则,在许多实际情况下可以很好地表现。我们对优化文献以及标准种子选择方法的几种替代方案进行了测试,并验证了Frank-Wolfe在执行时间和记忆中的出色表现,以及它可以很好地扩展有关社交用户(数百万)社交用户的问题。

Influencer marketing has become a thriving industry with a global market value expected to reach 15 billion dollars by 2022. The advertising problem that such agencies face is the following: given a monetary budget find a set of appropriate influencers that can create and publish posts of various types (e.g. text, image, video) for the promotion of a target product. The campaign's objective is to maximize across one or multiple online social platforms some impact metric of interest, e.g. number of impressions, sales (ROI), or audience reach. In this work, we present an original continuous formulation of the budgeted influencer marketing problem as a convex program. We further propose an efficient iterative algorithm based on the Frank-Wolfe method, that converges to the global optimum and has low computational complexity. We also suggest a simpler near-optimal rule of thumb, which can perform well in many practical scenarios. We test our algorithm and the heuristic against several alternatives from the optimization literature as well as standard seed selection methods and validate the superior performance of Frank-Wolfe in execution time and memory, as well as its capability to scale well for problems with very large number (millions) of social users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源