论文标题

在间隙双层石墨烯中,通过P-N连接的超高噪声Terahertz检测

Ultralow-noise terahertz detection by p-n junctions in gapped bilayer graphene

论文作者

Titova, Elena, Mylnikov, Dmitry, Kashchenko, Mikhail, Zhukov, Sergey, Dzhikirba, Kirill, Novoselov, Kostya, Bandurin, Denis, Alymov, Georgy, Svintsov, Dmitry

论文摘要

石墨烯显示出由于其高载体的迁移率,与片上波导和晶体管的兼容性以及较小的热电容性,可检测到Terahertz(THZ)辐射。同时,石墨烯物理特性在检测到的辐射上的弱反应可以追溯到没有带隙的情况下。在这里,我们研究了电诱导的带隙对用裂缝P-N结的石墨烯双层中Thz检测的影响。我们表明,间隙诱导会导致当前和电压势力同时增加。在约25 K的工作温度下,20 MeV带隙的响应性比无间隙状态的3到20倍。我们的设备在0.13 THz照明下的最大电压响应性超过50 kV/w,而噪声当量的功率降至36 fw/hz^0.5。这些值为基于半导体的低温Terahertz探测器设定了新的记录,并为有效且快速的Terahertz检测铺平了道路。

Graphene shows a strong promise for detection of terahertz (THz) radiation due to its high carrier mobility, compatibility with on-chip waveguides and transistors, and small heat capacitance. At the same time, weak reaction of graphene's physical properties on the detected radiation can be traced down to the absence of band gap. Here, we study the effect of electrically-induced band gap on THz detection in graphene bilayer with split-gate p-n junction. We show that gap induction leads to simultaneous increase in current and voltage responsivities. At operating temperatures of ~25 K, the responsivity at 20 meV band gap is from 3 to 20 times larger than that in the gapless state. The maximum voltage responsivity of our devices at 0.13 THz illumination exceeds 50 kV/W, while the noise equivalent power falls down to 36 fW/Hz^0.5. These values set new records for semiconductor-based cryogenic terahertz detectors, and pave the way for efficient and fast terahertz detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源