论文标题

分数总和的双曲线总和

Hyperbolic Summation for Fractional Sums

论文作者

Karras, Meselem, Li, Ling, Stucky, Joshua

论文摘要

令$ f(n)$为算术函数,对于[0,1)$中的某些$α\,让$ \ lfloor。\ rfloor $表示整数零件函数。 In this paper, we evaluate asymptotically the sums $$\sum_{n_{1}n_{2}\leq x}f \left( \left\lfloor \frac{x}{n_{1}n_{2}} \right\rfloor \right),$$ we use the estimation of three-dimensional exponential sums due致罗伯特和萨尔戈斯。

Let $f(n)$ be an arithmetic function with $f(n) \ll n^α$ for some $α\in[0,1)$ and let $\lfloor .\rfloor $ denote the integer part function. In this paper, we evaluate asymptotically the sums $$\sum_{n_{1}n_{2}\leq x}f \left( \left\lfloor \frac{x}{n_{1}n_{2}} \right\rfloor \right),$$ we use the estimation of three-dimensional exponential sums due to Robert and Sargos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源