论文标题

平行成像重建的低量张量辅助K空间生成模型

Low-rank Tensor Assisted K-space Generative Model for Parallel Imaging Reconstruction

论文作者

Zhang, Wei, Xiao, Zengwei, Tao, Hui, Zhang, Minghui, Xu, Xiaoling, Liu, Qiegen

论文摘要

尽管最近的深度学习方法,尤其是生成模型,在快速磁共振成像中表现出良好的性能,但仍有很大的改善高维生成的空间。考虑到基于分数的生成模型中的内部维度对估计数据分布的梯度有关键的影响,我们提出了一个新的想法,低级别张量辅助K-Space生成模型(LR-KGM),用于并行成像重建。这意味着我们将原始的先验信息转换为高维的先验信息以进行学习。更具体地说,将多通道数据构建到大型Hankel矩阵中,然后将矩阵折叠为张量以进行先进学习。在测试阶段,低级别旋转策略用于对生成网络的张量输出施加低级约束。此外,我们交替使用传统的生成迭代和低级别的高维张量进行重建。与最先进的实验比较表明,所提出的LR-KGM方法的性能更好。

Although recent deep learning methods, especially generative models, have shown good performance in fast magnetic resonance imaging, there is still much room for improvement in high-dimensional generation. Considering that internal dimensions in score-based generative models have a critical impact on estimating the gradient of the data distribution, we present a new idea, low-rank tensor assisted k-space generative model (LR-KGM), for parallel imaging reconstruction. This means that we transform original prior information into high-dimensional prior information for learning. More specifically, the multi-channel data is constructed into a large Hankel matrix and the matrix is subsequently folded into tensor for prior learning. In the testing phase, the low-rank rotation strategy is utilized to impose low-rank constraints on tensor output of the generative network. Furthermore, we alternately use traditional generative iterations and low-rank high-dimensional tensor iterations for reconstruction. Experimental comparisons with the state-of-the-arts demonstrated that the proposed LR-KGM method achieved better performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源