论文标题

REAP:一个大规模逼真的对抗贴剂基准

REAP: A Large-Scale Realistic Adversarial Patch Benchmark

论文作者

Hingun, Nabeel, Sitawarin, Chawin, Li, Jerry, Wagner, David

论文摘要

已知机器学习模型容易受到对抗扰动的影响。对抗贴片是一种著名的攻击,这是一个具有特别制作的图案的贴纸,使该模型错误地预测了其放置的对象。这次攻击对依赖于诸如自动驾驶汽车等相机的网络物理系统构成了关键威胁。尽管这个问题具有重要意义,但在这种情况下进行研究仍然很困难。评估现实世界中的攻击和防御措施的代价高昂,而合成数据是不现实的。在这项工作中,我们提出了收获(现实的对抗补丁)基准,这是一种数字基准测试,允许用户评估对真实图像的补丁攻击,以及在现实世界中的条件下。我们的基准建立在Mapillary Vistas数据集的顶部,其中包含14,000多个交通标志。每个符号都用一对几何和照明变换增强,可将其实际应用于符号上的数字化贴片。使用我们的基准测试,我们在现实条件下对对抗斑块攻击进行了第一个大规模评估。我们的实验表明,对抗斑块攻击可能会带来比以前认为的要小的威胁,并且对简单数字模拟的攻击的成功率并不能预测其在实践中的实际有效性。我们通过https://github.com/wagner-group/Reap-benchmark公开发布基准。

Machine learning models are known to be susceptible to adversarial perturbation. One famous attack is the adversarial patch, a sticker with a particularly crafted pattern that makes the model incorrectly predict the object it is placed on. This attack presents a critical threat to cyber-physical systems that rely on cameras such as autonomous cars. Despite the significance of the problem, conducting research in this setting has been difficult; evaluating attacks and defenses in the real world is exceptionally costly while synthetic data are unrealistic. In this work, we propose the REAP (REalistic Adversarial Patch) benchmark, a digital benchmark that allows the user to evaluate patch attacks on real images, and under real-world conditions. Built on top of the Mapillary Vistas dataset, our benchmark contains over 14,000 traffic signs. Each sign is augmented with a pair of geometric and lighting transformations, which can be used to apply a digitally generated patch realistically onto the sign. Using our benchmark, we perform the first large-scale assessments of adversarial patch attacks under realistic conditions. Our experiments suggest that adversarial patch attacks may present a smaller threat than previously believed and that the success rate of an attack on simpler digital simulations is not predictive of its actual effectiveness in practice. We release our benchmark publicly at https://github.com/wagner-group/reap-benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源