论文标题

二项式边缘理想的Cohen-Macaulay特性,图

Cohen-Macaulay Property of Binomial Edge Ideals with Girth of Graphs

论文作者

Saha, Kamalesh, Sengupta, Indranath

论文摘要

conca和varbaro(发明数学221(2020),第3号)显示了分级理想的深度相等,并且当初始理想不平方时,在多项式环中的初始理想。在本文中,我们在Cohen-Macaulay二项式边缘理想的研究中给出了一些美丽的应用。我们证明,对于Cohen-Macaulay二项式边缘理想的表征,仅考虑“双连接的图形具有与某些晶须相连”,并且通过研究初始理想来完成。我们给出了几个必要的条件,使二项式边缘在较小的图表方面是Cohen-Macaulay的理想条件。同样,在假设下,我们在图形块方面为二项式边缘理想的Cohen-MaCaulay度提供了足够的条件。此外,我们证明了带有Cohen-Macaulay二项式边缘理想的图形的图形不到$ 5 $或等于Infinity。

Conca and Varbaro (Invent. Math. 221 (2020), no. 3) showed the equality of depth of a graded ideal and its initial ideal in a polynomial ring when the initial ideal is square-free. In this paper, we give some beautiful applications of this fact in the study of Cohen-Macaulay binomial edge ideals. We prove that for the characterization of Cohen-Macaulay binomial edge ideals, it is enough to consider only "biconnected graphs with some whisker attached" and this done by investigating the initial ideals. We give several necessary conditions for a binomial edge ideal to be Cohen-Macaulay in terms of smaller graphs. Also, under a hypothesis, we give a sufficient condition for Cohen-Macaulayness of binomial edge ideals in terms of blocks of graphs. Moreover, we show that a graph with Cohen-Macaulay binomial edge ideal has girth less than $5$ or equal to infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源