论文标题
部分可观测时空混沌系统的无模型预测
The Modified MSA, a Gradient Flow and Convergence
论文作者
论文摘要
经过修改的连续近似方法(MSA)是一种迭代方案,用于基于Pontryagin最佳原理在连续时间内近似解决方案,该原理从初始开放环路控制开始,求解向前方程,向后的异位方程,然后执行静态最小化步骤。我们观察到这是梯度流系统的隐式欧拉方案。我们证明,修改后的MSA迭代术的适当插值将带有速率$τ$的梯度流收敛。然后,随着时间流向无穷大,我们研究了这种梯度流的收敛性。在一般(非凸)情况下,我们证明梯度项本身会收敛到零。这是能量认同的结果,该能量表明优化目标沿梯度流降低。此外,在凸情况下,当Pontryagin最佳原理提供了足够的最佳条件时,我们证明,优化目标以$ \ tfrac {1} {1} {s} $收敛到其最佳价值,并以强质量的指数速率收敛。主要的技术困难在于获得哈密顿量的适当特性(增长,连续性)。这些是通过利用有界平均振荡理论(BMO)的标准来获得的,以估算出伴随的向后随机微分方程(BSDE)。
The modified Method of Successive Approximations (MSA) is an iterative scheme for approximating solutions to stochastic control problems in continuous time based on Pontryagin Optimality Principle which, starting with an initial open loop control, solves the forward equation, the backward adjoint equation and then performs a static minimization step. We observe that this is an implicit Euler scheme for a gradient flow system. We prove that appropriate interpolations of the iterates of the modified MSA converge to a gradient flow with rate $τ$. We then study the convergence of this gradient flow as time goes to infinity. In the general (non-convex) case we prove that the gradient term itself converges to zero. This is a consequence of an energy identity which shows that the optimization objective decreases along the gradient flow. Moreover, in the convex case, when Pontryagin Optimality Principle provides a sufficient condition for optimality, we prove that the optimization objective converges at rate $\tfrac{1}{S}$ to its optimal value and at exponential rate under strong convexity. The main technical difficulties lie in obtaining appropriate properties of the Hamiltonian (growth, continuity). These are obtained by utilising the theory of Bounded Mean Oscillation (BMO) martingales required for estimates on the adjoint Backward Stochastic Differential Equation (BSDE).