论文标题

KONX:跨分辨率图像质量评估

KonX: Cross-Resolution Image Quality Assessment

论文作者

Wiedemann, Oliver, Hosu, Vlad, Su, Shaolin, Saupe, Dietmar

论文摘要

在许多计算机视觉子场中,比例不变是一个开放的问题。例如,对象标签应在范围内保持恒定,但是在许多情况下,模型预测会有所不同。对于随着演示量表而变化的任务,此问题越来越困难。在图像质量评估(IQA)中,减排减弱的减弱,例如模糊或压缩伪像,这可能会对主观研究中引起的印象产生积极影响。为了准确预测感知图像质量,跨分辨率IQA方法必须考虑到模型不足引起的分辨率依赖性误差以及地面真理中的感知标签变化。我们介绍了这类研究的第一个研究,并通过KONX分别研究了这两个问题,KONX是一个新颖,精心制作的跨分辨率IQA数据库。本文贡献了以下内容:1。通过KONX,我们提供了由介绍分辨率变化引起的标签转移的经验证据。 2。我们表明,客观IQA方法具有比例偏差,从而降低了其预测性能。 3。我们提出了一种多尺度和多列DNN体系结构,该体系结构改善了此任务的先前最新IQA模型的性能,包括最近的变形金刚。因此,我们在图像质量评估中提出并解决了一个新的研究问题。

Scale-invariance is an open problem in many computer vision subfields. For example, object labels should remain constant across scales, yet model predictions diverge in many cases. This problem gets harder for tasks where the ground-truth labels change with the presentation scale. In image quality assessment (IQA), downsampling attenuates impairments, e.g., blurs or compression artifacts, which can positively affect the impression evoked in subjective studies. To accurately predict perceptual image quality, cross-resolution IQA methods must therefore account for resolution-dependent errors induced by model inadequacies as well as for the perceptual label shifts in the ground truth. We present the first study of its kind that disentangles and examines the two issues separately via KonX, a novel, carefully crafted cross-resolution IQA database. This paper contributes the following: 1. Through KonX, we provide empirical evidence of label shifts caused by changes in the presentation resolution. 2. We show that objective IQA methods have a scale bias, which reduces their predictive performance. 3. We propose a multi-scale and multi-column DNN architecture that improves performance over previous state-of-the-art IQA models for this task, including recent transformers. We thus both raise and address a novel research problem in image quality assessment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源