论文标题
壳的架构应用,其边界的边界尺寸为恒定的实体角度
The architectural application of shells whose boundaries subtend a constant solid angle
论文作者
论文摘要
表面几何形状在桥梁,拱顶和壳的设计中起着核心作用,使用各种技术生成旨在平衡结构,空间,美学和施工要求的几何形状。 在本文中,我们提出了定义的表面的使用,以使给定的闭合曲线在表面上的所有点上都构成恒定的实体角并形成其边界。恒定的实体角表面使一个人能够控制边界斜率,因此随着跨度的变化而达到近似恒定的跨度比率,使其对壳结构在结构上可行。另外,当整个表面边界位于同一平面时,边界周围的表面的斜率是恒定的,因此遵循主曲率方向。这样的表面适用于平面四边形符合表面边界的表面网格。它们也可以用作通风应力功能,形式的发现具有浓缩弯角的力的壳体。 我们的技术采用高斯河网定理来计算空间点的固体角度和牛顿的方法将点移到恒定的实体角表面上。我们使用生物 - 萨瓦特定律来找到实体角的梯度。该技术可以与每个表面点并行应用,而无需初始网格,在已知边界曲线时为将来的研究和其他应用开放,但初始拓扑是未知的。 我们使用三个维度的示例显示了恒定固体角度表面的几何特性,可能性和局限性。
Surface geometry plays a central role in the design of bridges, vaults and shells, using various techniques for generating a geometry which aims to balance structural, spatial, aesthetic and construction requirements. In this paper we propose the use of surfaces defined such that given closed curves subtend a constant solid angle at all points on the surface and form its boundary. Constant solid angle surfaces enable one to control the boundary slope and hence achieve an approximately constant span-to-height ratio as the span varies, making them structurally viable for shell structures. In addition, when the entire surface boundary is in the same plane, the slope of the surface around the boundary is constant and thus follows a principal curvature direction. Such surfaces are suitable for surface grids where planar quadrilaterals meet the surface boundaries. They can also be used as the Airy stress function in the form finding of shells having forces concentrated at the corners. Our technique employs the Gauss-Bonnet theorem to calculate the solid angle of a point in space and Newton's method to move the point onto the constant solid angle surface. We use the Biot-Savart law to find the gradient of the solid angle. The technique can be applied in parallel to each surface point without an initial mesh, opening up for future studies and other applications when boundary curves are known but the initial topology is unknown. We show the geometrical properties, possibilities and limitations of surfaces of constant solid angle using examples in three dimensions.