论文标题

改善自动嘴情绪识别的方法

An Approach for Improving Automatic Mouth Emotion Recognition

论文作者

Biondi, Giulio, Franzoni, Valentina, Gervasi, Osvaldo, Perri, Damiano

论文摘要

该研究提出并测试通过通过卷积神经网络(CNN)进行口腔识别自动情绪识别的技术,该技术旨在用于支持患有沟通技巧问题的健康障碍的人(例如,肌肉浪费,中风,自闭症或更简单的痛苦),以识别情绪并产生实时反馈或数据供您喂养系统。软件系统启动计算,以识别获得的图像上是否存在脸部,然后查找口位置并提取相应的功能。这两个任务均使用基于HAAR功能的分类器进行,这可以确保快速执行和有希望的性能。如果我们以前的作品着重于单个用户的个性化培训的视觉微表达,则该策略旨在在广义面孔数据集上训练系统。

The study proposes and tests a technique for automated emotion recognition through mouth detection via Convolutional Neural Networks (CNN), meant to be applied for supporting people with health disorders with communication skills issues (e.g. muscle wasting, stroke, autism, or, more simply, pain) in order to recognize emotions and generate real-time feedback, or data feeding supporting systems. The software system starts the computation identifying if a face is present on the acquired image, then it looks for the mouth location and extracts the corresponding features. Both tasks are carried out using Haar Feature-based Classifiers, which guarantee fast execution and promising performance. If our previous works focused on visual micro-expressions for personalized training on a single user, this strategy aims to train the system also on generalized faces data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源