论文标题
生态学中的复杂系统:大型Lotka-Volterra模型和随机矩阵的带导游
Complex systems in Ecology: a guided tour with large Lotka-Volterra models and random matrices
论文作者
论文摘要
生态系统代表原型复杂动力系统,通常由$$ \ frac {d x_i} {d x_i} {d t} =x_iφ_i(x_1,x_1,\ cdots,x_n)\,$ n $ n $ n $的物种和$ x_i $ $ i $ i i $ i i $ i i $ i $ i $ i $ i $ i $ i n $ y y $ i $ i $ i n $ y $ n $建模。 Among these families of coupled diffential equations, Lotka-Volterra (LV) equations $$ \frac{d x_i}{d t} = x_i ( r_i - x_i +(Γ\mathbf{x})_i)\ , $$ play a privileged role, as the LV model represents an acceptable trade-off between complexity and tractability.在这里,$ r_i $代表物种$ i $和$γ$的固有增长,用于交互矩阵:$γ_{ij} $代表物种$ j $对物种$ i $的影响。对于大$ n $,估计矩阵$γ$通常是一项压倒性的任务,另一种选择是随机绘制$γ$,以有限的模型功能来对其统计分配进行参数。在处理大型随机矩阵时,我们自然依赖于随机矩阵理论(RMT)。 这篇评论文章的目的是在理论生态学和大型随机矩阵理论的结局中概述这项工作。它旨在跨学科的受众,涵盖理论生态学,复杂系统,统计物理学和数学生物学。
Ecosystems represent archetypal complex dynamical systems, often modelled by coupled differential equations of the form $$ \frac{d x_i}{d t} = x_i φ_i(x_1,\cdots, x_N)\ , $$ where $N$ represents the number of species and $x_i$, the abundance of species $i$. Among these families of coupled diffential equations, Lotka-Volterra (LV) equations $$ \frac{d x_i}{d t} = x_i ( r_i - x_i +(Γ\mathbf{x})_i)\ , $$ play a privileged role, as the LV model represents an acceptable trade-off between complexity and tractability. Here, $r_i$ represents the intrinsic growth of species $i$ and $Γ$ stands for the interaction matrix: $Γ_{ij}$ represents the effect of species $j$ over species $i$. For large $N$, estimating matrix $Γ$ is often an overwhelming task and an alternative is to draw $Γ$ at random, parametrizing its statistical distribution by a limited number of model features. Dealing with large random matrices, we naturally rely on Random Matrix Theory (RMT). The aim of this review article is to present an overview of the work at the junction of theoretical ecology and large random matrix theory. It is intended to an interdisciplinary audience spanning theoretical ecology, complex systems, statistical physics and mathematical biology.