论文标题

MADNIS-神经多通道重要性抽样

MadNIS -- Neural Multi-Channel Importance Sampling

论文作者

Heimel, Theo, Winterhalder, Ramon, Butter, Anja, Isaacson, Joshua, Krause, Claudius, Maltoni, Fabio, Mattelaer, Olivier, Plehn, Tilman

论文摘要

LHC的理论预测需要精确的数值相位空间集成和未加权事件的产生。我们将机器学习的多通道权重与用于重要性采样的正常流量相结合,以改善经典的数值集成方法。我们基于可逆网络开发了有效的双向设置,将在线和缓冲培训结合了潜在昂贵的集成量。我们以额外的狭窄共振来说明我们的Drell-Yan过程方法。

Theory predictions for the LHC require precise numerical phase-space integration and generation of unweighted events. We combine machine-learned multi-channel weights with a normalizing flow for importance sampling, to improve classical methods for numerical integration. We develop an efficient bi-directional setup based on an invertible network, combining online and buffered training for potentially expensive integrands. We illustrate our method for the Drell-Yan process with an additional narrow resonance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源