论文标题
随机量子电路随机基准测试
Randomized benchmarking with random quantum circuits
论文作者
论文摘要
在许多变体中,随机基准测试(RB)是一种用于评估量子计算机上栅极实现质量的广泛使用技术。如果在紧凑型组中随机统一地绘制了审查的门,则存在详细的理论理解和一般保证,用于对RB方案的功能和解释。相比之下,许多实际上有吸引力且可扩展的RB协议实现了随机从某个栅极设置绘制的本地门的随机量子电路。尽管对于那些不均匀的RB协议,但在实验上的一般保证中,在实验上合理的假设下,对大门的一般保证。在这项工作中,我们为大量的RB协议得出了此类保证,用于随机电路,我们称为过滤的RB。突出的例子包括线性跨透明基准测试,角色基准测试,Pauli-Noise断层扫描以及同时RB的变体。在最新的随机电路结果的基础上,我们表明许多相关的过滤RB方案可以通过线性深度的随机量子电路实现,并且我们为常见实例提供了明确的小常数。我们进一步得出了过滤后的RB的一般样品复杂性界限。我们显示过过滤的RB对于几个相关组的样品有效,包括针对高阶串扰的协议。我们对非均匀过滤的RB的理论原则上足够灵活,可以为非宇宙和模拟量子模拟器设计新协议。
In its many variants, randomized benchmarking (RB) is a broadly used technique for assessing the quality of gate implementations on quantum computers. A detailed theoretical understanding and general guarantees exist for the functioning and interpretation of RB protocols if the gates under scrutiny are drawn uniformly at random from a compact group. In contrast, many practically attractive and scalable RB protocols implement random quantum circuits with local gates randomly drawn from some gate-set. Despite their abundance in practice, for those non-uniform RB protocols, general guarantees for gates from arbitrary compact groups under experimentally plausible assumptions are missing. In this work, we derive such guarantees for a large class of RB protocols for random circuits that we refer to as filtered RB. Prominent examples include linear cross-entropy benchmarking, character benchmarking, Pauli-noise tomography and variants of simultaneous RB. Building upon recent results for random circuits, we show that many relevant filtered RB schemes can be realized with random quantum circuits in linear depth, and we provide explicit small constants for common instances. We further derive general sample complexity bounds for filtered RB. We show filtered RB to be sample-efficient for several relevant groups, including protocols addressing higher-order cross-talk. Our theory for non-uniform filtered RB is, in principle, flexible enough to design new protocols for non-universal and analog quantum simulators.