论文标题

与无限Oétale基本小组的品种上的积分点

Integral points on varieties with infinite étale fundamental group

论文作者

Achenjang, Niven T., Morrow, Jackson S.

论文摘要

我们研究了与无限étale基本组品种的积分点。更准确地说,对于一个数字字段$ f $和$ x/f $是一个光滑的投射品种,我们证明,对于任何几何galois覆盖了$φ\ colon y \ colon y \至x $ to x $ tem tem tem tem tem tem tem tem the $ \ yathscr {l} $ y Mathscr {l} $ y y $ y $ y $ y $ y line $ y $ y line $ d $ d的完整$ d $ | \ Mathscr {l} | $,$ d $是几何不可约的,$ x $上的任何集合$φ(d)$都是有限的。我们将此结果应用于具有无限典型基本组的品种,以提供不可还原的新示例,以证明整体积分有限的品种。

We study integral points on varieties with infinite étale fundamental groups. More precisely, for a number field $F$ and $X/F$ a smooth projective variety, we prove that for any geometrically Galois cover $φ\colon Y \to X$ of degree at least $2\dim(X)^2$, there exists an ample line bundle $\mathscr{L}$ on $Y$ such that for a general member $D$ of the complete linear system $|\mathscr{L}|$, $D$ is geometrically irreducible and any set of $φ(D)$-integral points on $X$ is finite. We apply this result to varieties with infinite étale fundamental group to give new examples of irreducible, ample divisors on varieties for which finiteness of integral points is provable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源