论文标题

使用深度学习的分子云的距离测定分子云的第一个象限:I。方法和结果

Distance determination of molecular clouds in the 1st quadrant of the Galactic plane using deep learning : I. Method and Results

论文作者

Fujita, Shinji, Ito, A. M., Miyamoto, Yusuke, Kawanishi, Yasutomo, Torii, Kazufumi, Shimajiri, Yoshito, Nishimura, Atsushi, Tokuda, Kazuki, Ohnishi, Toshikazu, Kaneko, Hiroyuki, Inoue, Tsuyoshi, Takekawa, Shunya, Kohno, Mikito, Ueda, Shota, Nishimoto, Shimpei, Yoneda, Ryuki, Nishikawa, Kaoru, Yoshida, Daisuke

论文摘要

机器学习已成功地应用于各种领域,但它是否是确定银河系中分子云的距离的可行工具是一个开放的问题。在银河系中,运动距离通常用作与分子云的距离。但是,存在一个问题,因为对于内部银河系,可以同时得出两个不同的解决方案,即“接近”解决方案,``近''解决方案可以同时得出。我们尝试使用卷积神经网络(CNN)构建两类(``接近''或``FAR')推理模型,这是一种深度学习的形式,可以通常捕获空间特征。在这项研究中,我们将CO数据集用于使用Nobeyama 45-M射电望远镜获得的银河平面的第一象限(L = 62-10度,| B | <1度)。在模型中,我们将12CO(j = 1-0)排放的三维分布(位置位置 - 速度)应用于主要输入。带有``近''或``far''注释的数据集是由红外天文学卫星的HII区域目录进行的,以训练模型。结果,我们可以在培训数据集上构建具有76%精度率的CNN模型。通过使用模型,我们确定了与块状算法鉴定的分子云的距离。我们发现,在12CO数据中鉴定的距离<8.15 kpc的分子云的质量遵循M> 10^3 MSUN的质量范围约为-2.3的幂律分布。同样,从银河北极看到的星系的详细分子气体分布也确定。

Machine learning has been successfully applied in varied field but whether it is a viable tool for determining the distance to molecular clouds in the Galaxy is an open question. In the Galaxy, the kinematic distance is commonly employed as the distance to a molecular cloud. However, there is a problem in that for the inner Galaxy, two different solutions, the ``Near'' solution, and the ``Far'' solution, can be derived simultaneously. We attempted to construct a two-class (``Near'' or ``Far'') inference model using a Convolutional Neural Network (CNN), a form of deep learning that can capture spatial features generally. In this study, we used the CO dataset toward the 1st quadrant of the Galactic plane obtained with the Nobeyama 45-m radio telescope (l = 62-10 degree, |b| < 1 degree). In the model, we applied the three-dimensional distribution (position-position-velocity) of the 12CO (J=1-0) emissions as the main input. The dataset with ``Near'' or ``Far'' annotation was made from the HII region catalog of the infrared astronomy satellite WISE to train the model. As a result, we could construct a CNN model with a 76% accuracy rate on the training dataset. By using the model, we determined the distance to molecular clouds identified by the CLUMPFIND algorithm. We found that the mass of the molecular clouds with a distance of < 8.15 kpc identified in the 12CO data follows a power-law distribution with an index of about -2.3 in the mass range of M >10^3 Msun. Also, the detailed molecular gas distribution of the Galaxy as seen from the Galactic North pole was determined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源