论文标题

智能工厂中的无害学习机器停止预测

Agnostic Learning for Packing Machine Stoppage Prediction in Smart Factories

论文作者

Filios, Gabriel, Katsidimas, Ioannis, Nikoletseas, Sotiris, Panagiotou, Stefanos H., Raptis, Theofanis P.

论文摘要

网络物理融合正在为工业运营商打开新的商机。深入整合网络和物理世界的需求建立了丰富的业务议程,以巩固新的系统和网络工程方法。没有丰富和异构的数据来源以及智能剥削的能力,这场革命将是不可能的,这主要是因为数据将作为促进行业4.0的基本资源。来自数据驱动的流程监控字段,该数据驱动的过程监测字段是该数据驱动的过程监测字段,它采用机器学习方法来启用预测性维护应用程序。在本文中,我们通过改造和预处理包装机的运营状态录音的历史工业数据集(来自来自食品和饮料领域的制造工厂生产线的实际数据),研究了行业4.0应用的受欢迎的机器学习算法以及监督的机器学习算法。在我们的方法论中,我们仅使用一个关于机器操作状态的单个信号来做出我们的预测,而无需考虑其他操作变量或故障和警告信号,因此其表征为``agnostic''。在这方面,结果表明,所采用的方法在三个有针对性的用例上实现了相当有希望的性能。

The cyber-physical convergence is opening up new business opportunities for industrial operators. The need for deep integration of the cyber and the physical worlds establishes a rich business agenda towards consolidating new system and network engineering approaches. This revolution would not be possible without the rich and heterogeneous sources of data, as well as the ability of their intelligent exploitation, mainly due to the fact that data will serve as a fundamental resource to promote Industry 4.0. One of the most fruitful research and practice areas emerging from this data-rich, cyber-physical, smart factory environment is the data-driven process monitoring field, which applies machine learning methodologies to enable predictive maintenance applications. In this paper, we examine popular time series forecasting techniques as well as supervised machine learning algorithms in the applied context of Industry 4.0, by transforming and preprocessing the historical industrial dataset of a packing machine's operational state recordings (real data coming from the production line of a manufacturing plant from the food and beverage domain). In our methodology, we use only a single signal concerning the machine's operational status to make our predictions, without considering other operational variables or fault and warning signals, hence its characterization as ``agnostic''. In this respect, the results demonstrate that the adopted methods achieve a quite promising performance on three targeted use cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源