论文标题

AFLGUARD:拜占庭式异步联盟学习

AFLGuard: Byzantine-robust Asynchronous Federated Learning

论文作者

Fang, Minghong, Liu, Jia, Gong, Neil Zhenqiang, Bentley, Elizabeth S.

论文摘要

联合学习(FL)是一种新兴的机器学习范式,在该范式中,客户在云服务器的帮助下共同学习模型。 FL的一个基本挑战是客户通常是异质的,例如,他们具有不同的计算能力,因此客户可以将模型更新发送给服务器,并具有实质上不同的延迟。异步FL的目的是通过允许服务器更新模型一旦任何客户的模型更新到达而无需等待其他客户端模型更新而更新模型,旨在解决这一挑战。但是,像同步FL一样,异步FL也容易受到中毒攻击的影响,在该攻击中,恶意客户通过毒害其本地数据和/或发送给服务器的模型更新来操纵模型。 Byzantine-Robust FL旨在防御中毒攻击。尤其是,即使某些客户是恶意的并且具有拜占庭行为,拜占庭式射击也可以学习准确的模型。但是,大多数现有关于拜占庭式抗体的研究集中在同步FL上,而异步FL几乎没有探索。在这项工作中,我们通过提出Aflguard(一种拜占庭式异步法方法)来弥合这一差距。我们表明,从理论和经验上讲,Aflguard都对各种现有和适应性中毒的攻击(都没有定位和有针对性)都有坚固的态度。此外,Aflguard的表现优于现有的拜占庭式异步FL方法。

Federated learning (FL) is an emerging machine learning paradigm, in which clients jointly learn a model with the help of a cloud server. A fundamental challenge of FL is that the clients are often heterogeneous, e.g., they have different computing powers, and thus the clients may send model updates to the server with substantially different delays. Asynchronous FL aims to address this challenge by enabling the server to update the model once any client's model update reaches it without waiting for other clients' model updates. However, like synchronous FL, asynchronous FL is also vulnerable to poisoning attacks, in which malicious clients manipulate the model via poisoning their local data and/or model updates sent to the server. Byzantine-robust FL aims to defend against poisoning attacks. In particular, Byzantine-robust FL can learn an accurate model even if some clients are malicious and have Byzantine behaviors. However, most existing studies on Byzantine-robust FL focused on synchronous FL, leaving asynchronous FL largely unexplored. In this work, we bridge this gap by proposing AFLGuard, a Byzantine-robust asynchronous FL method. We show that, both theoretically and empirically, AFLGuard is robust against various existing and adaptive poisoning attacks (both untargeted and targeted). Moreover, AFLGuard outperforms existing Byzantine-robust asynchronous FL methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源