论文标题

组织病理学的混合监督改善了MRI的前列腺癌分类

Mixed Supervision of Histopathology Improves Prostate Cancer Classification from MRI

论文作者

Rajagopal, Abhejit, Westphalen, Antonio C., Velarde, Nathan, Ullrich, Tim, Simko, Jeffry P., Nguyen, Hao, Hope, Thomas A., Larson, Peder E. Z., Magudia, Kirti

论文摘要

MRI的非侵入性前列腺癌检测有可能通过提供临床疾病的早期检测(ISUP等级组> = 2)来彻底改变患者护理,但迄今已显示出有限的阳性预测价值。为了解决这个问题,我们提出了一种基于MRI的深度学习方法,用于预测适用于患者人群的临床上重要的前列腺癌,随后地面真相活检结果从良性病理学到ISUP级级〜5。具体而言,我们证明,尽管与基于图像的分割相一致的成本降低了一致性,但通过各种组织病理学基础真理的混合监督可以提高分类性能。也就是说,先前的方法利用病理学结果是源自目标活检和整个前列腺切除术以强烈监督临床上重要癌症的定位的地面真理,我们的方法还利用了从非货币的系统活检中提取的薄弱监督信号,该信号具有具有区域性定位的非量化系统活检。我们的关键创新是通过分布而不是通过价值进行回归,从而实现了传统上深度学习策略忽略的其他病理发现。我们在2015年至2018年在UCSF收集的多参数前列腺MRI检查的数据集(测试n = 160)上评估了我们的模型前列腺MRI解释的成像报告和数据系统(PI-RADS)临床标准。

Non-invasive prostate cancer detection from MRI has the potential to revolutionize patient care by providing early detection of clinically-significant disease (ISUP grade group >= 2), but has thus far shown limited positive predictive value. To address this, we present an MRI-based deep learning method for predicting clinically significant prostate cancer applicable to a patient population with subsequent ground truth biopsy results ranging from benign pathology to ISUP grade group~5. Specifically, we demonstrate that mixed supervision via diverse histopathological ground truth improves classification performance despite the cost of reduced concordance with image-based segmentation. That is, where prior approaches have utilized pathology results as ground truth derived from targeted biopsies and whole-mount prostatectomy to strongly supervise the localization of clinically significant cancer, our approach also utilizes weak supervision signals extracted from nontargeted systematic biopsies with regional localization to improve overall performance. Our key innovation is performing regression by distribution rather than simply by value, enabling use of additional pathology findings traditionally ignored by deep learning strategies. We evaluated our model on a dataset of 973 (testing n=160) multi-parametric prostate MRI exams collected at UCSF from 2015-2018 followed by MRI/ultrasound fusion (targeted) biopsy and systematic (nontargeted) biopsy of the prostate gland, demonstrating that deep networks trained with mixed supervision of histopathology can significantly exceed the performance of the Prostate Imaging-Reporting and Data System (PI-RADS) clinical standard for prostate MRI interpretation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源