论文标题

预测间隔生成双重精度质量驱动的神经网络

Dual Accuracy-Quality-Driven Neural Network for Prediction Interval Generation

论文作者

Morales, Giorgio, Sheppard, John W.

论文摘要

准确的不确定性量化对于增强现实世界应用中深度学习模型的可靠性是必要的。在回归任务的情况下,应提供预测间隔(PI)以及深度学习模型的确定性预测。只要这些PI足够狭窄并捕获大部分概率密度,这种PI就具有有用或“高质量”。在本文中,我们提出了一种方法,除了传统的目标预测外,还可以自动学习基于回归的神经网络的预测间隔。特别是,我们训练两个伴随神经网络:一种使用一个输出,目标估计,另一种使用两个输出,即相应PI的上限和下限。我们的主要贡献是设计了PI生成网络的新型损失函数,该网络考虑了目标估计网络的输出,并具有两个优化目标:最大程度地限制平均预测间隔宽度并使用约束来确保PI完整性最大化预测间隔概率覆盖范围。此外,我们引入了一个自适应系数,该系数在损失函数中平衡两个目标,从而减轻了微调的任务。使用合成数据集,八个基准数据集和现实世界的作物产量预测数据集的实验表明,与三种由三种由三种基于神经网络基于神经网络产生的PI相比,我们的方法能够保持名义概率覆盖范围,并产生明显狭窄的PI,而不会降低其目标估计准确性。换句话说,我们的方法显示出产生更高质量的PI。

Accurate uncertainty quantification is necessary to enhance the reliability of deep learning models in real-world applications. In the case of regression tasks, prediction intervals (PIs) should be provided along with the deterministic predictions of deep learning models. Such PIs are useful or "high-quality" as long as they are sufficiently narrow and capture most of the probability density. In this paper, we present a method to learn prediction intervals for regression-based neural networks automatically in addition to the conventional target predictions. In particular, we train two companion neural networks: one that uses one output, the target estimate, and another that uses two outputs, the upper and lower bounds of the corresponding PI. Our main contribution is the design of a novel loss function for the PI-generation network that takes into account the output of the target-estimation network and has two optimization objectives: minimizing the mean prediction interval width and ensuring the PI integrity using constraints that maximize the prediction interval probability coverage implicitly. Furthermore, we introduce a self-adaptive coefficient that balances both objectives within the loss function, which alleviates the task of fine-tuning. Experiments using a synthetic dataset, eight benchmark datasets, and a real-world crop yield prediction dataset showed that our method was able to maintain a nominal probability coverage and produce significantly narrower PIs without detriment to its target estimation accuracy when compared to those PIs generated by three state-of-the-art neural-network-based methods. In other words, our method was shown to produce higher-quality PIs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源