论文标题

在运算符的关节数字半径和巴拉克空间的关节数值指数上

On joint numerical radius of operators and joint numerical index of a Banach space

论文作者

Mal, Arpita

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Generalizing the notion of numerical range and numerical radius of an operator on a Banach space, we introduce the notion of joint numerical range and joint numerical radius of tuple of operators on a Banach space. We study the convexity of the joint numerical range. We show that the joint numerical radius defines a norm if and only if the numerical radius defines a norm on the corresponding space. Then we prove that on a finite-dimensional Banach space, the joint numerical radius can be retrieved from the extreme points. Furthermore, we introduce a notion of joint numerical index of a Banach space. We explore the same for direct sum of Banach spaces. Applying these results, finally we compute the joint numerical index of some classical Banach spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源